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Abstract. Corporations, industries and non-governmental or-
ganizations have become increasingly concerned with grow-
ing water risks in many parts of the world. Most of the
focus has been on water scarcity and competition for the
resource between agriculture, urban users, ecology and in-
dustry. However, water risks are multi-dimensional. Water-
related hazards include flooding due to extreme rainfall, per-
sistent drought and pollution, either due to industrial oper-
ations themselves, or to the failure of infrastructure. Most
companies have risk management plans at each operational
location to address these risks to a certain design level. The
residual risk may or may not be managed, and is typically not
quantified at a portfolio scale, i.e. across many sites. Given
that climate is the driver of many of these extreme events,
and there is evidence of quasi-periodic climate regimes at
inter-annual and decadal timescales, it is possible that a port-
folio is subject to persistent, multi-year exceedances of the
design level. In other words, for a multi-national corpora-
tion, it is possible that there is correlation in the climate-
induced portfolio water risk across its operational sites as
multiple sites may experience a hazard beyond the design
level in a given year. Therefore, from an investor’s perspec-
tive, a need exists for a water risk index that allows for an
exploration of the possible space and/or time clustering in
exposure across many sites contained in a portfolio. This pa-
per represents a first attempt to develop an index for finan-
cial exposure of a geographically diversified, global portfo-
lio to the time-varying risk of climatic extremes using long
daily global rainfall datasets derived from climate re-analysis
models. Focusing on extreme daily rainfall amounts and us-
ing examples from major mining companies, we illustrate
how the index can be developed. We discuss how companies

can use it to explore their corporate exposure, and what they
may need to disclose to investors and regulators to promote
transparency as to risk exposure and mitigation efforts. For
the examples of mining companies provided, we note that
the actual exposure is substantially higher than would be ex-
pected in the absence of space and time correlation of risk
as is usually tacitly assumed. We also find evidence for the
increasing exposure to climate-induced risk, and for decadal
variability in exposure. The relative vulnerability of different
portfolios to multiple extreme events in a given year is also
demonstrated.

1 Introduction

Long-term investors, such as sovereign wealth funds, need
to account for risks that may manifest themselves over sev-
eral decades, and hence they may have a very different per-
spective on risk than short-term investors. In particular, they
have a growing interest in understanding how climate and
environmental risks may impact the companies comprising
their investment portfolios. Scientific projections that climate
change may increase the frequency and intensity of extreme
rainfall and droughts amplify such concerns. Water-related
risks dominate the pathways of exposure to climate variabil-
ity and change. Consequently, many studies are being com-
missioned to “downscale” climate change projections to the
level of cities or even individual assets as part of an environ-
mental risk analysis. In the process, metrics and pathways
of climate and water risk exposure at the asset level are re-
assessed, including, in some cases, past exposure and out-
comes.
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However, site-specific data are often limited and regional
climate may exhibit significant quasi-periodic or cyclical
variability, with periods ranging from inter-annual (e.g. 3 to
7 years in the case of the El Niño–Southern Oscillation) to
multi-decadal (e.g. 16–20 years for the Pacific Decadal Os-
cillation and 40–70 years for the Atlantic Multi-decadal Os-
cillation; see Frankcombe et al., 2010; McCabe and Palecki,
2006; Biondi, 2001; Knight et al., 2006; Gershunov and Bar-
nett, 1998; Grimm and Tedeschi, 2009; Nicholson and Kim,
1997; Cayan et al., 1999; Risbey et al., 2009; Verdon et al.,
2004; Kiem et al., 2003). Over the last century, facilities de-
signed to deal with floods and droughts or to control pollu-
tion, as well as financial risk instruments such as insurance,
have typically been designed with less than 30 years of at-site
data. As illustrated in Fig. 1 and quantitatively demonstrated
in Jain and Lall (2001), if the climate cycle shifts, an estimate
of a 100-year event based on a specific 30 years of data may
correspond to either a more frequent (e.g. 10-year) or rarer
(e.g. 1000-year) event at the site in the succeeding 30 years
when that instrument is actually used.

From a financial perspective, such regime-like behaviour
is of interest. For a given asset, if the pre-design period cor-
responded to a wet regime, infrastructure could well be over
designed, and the associated capital cost may negatively im-
pact the project’s economics. Conversely, if this period was
lacking rainfall extremes, and if the next 10 years are ex-
pected to correspond to the regime with a high frequency of
extreme rainfall, then production losses and reconstruction
costs, even using a modest discount rate, may have a much
higher than anticipated impact on the valuation of the min-
ing asset. For an insurance contract, this would correspond
to a clustering of payouts over that period. This may also
translate into higher insurance rates, which may not be re-
duced as a transition to the regime occurs, whereby the fre-
quency of extreme events goes down. Finally, in this scenario
the investor may face a stranded asset, as the costs of recon-
struction and liabilities caused by catastrophic failures may
be prohibitive. Long climate records are needed to identify
the temporal structure of the risk of extreme events, and to
reflect it in subsequent risk analyses, so that appropriate es-
timates of the risk anticipated in the next decade or later can
be made.

For the mining industry, depending on the duration and
intensity of an extreme rainfall event, a cascade of direct and
indirect financial impacts can result. These include

– production losses resulting from flooding of mine op-
erations, loss of roadways, tailing dams, electricity ser-
vices, equipment and/or housing;

– fines and clean-up costs, due to release of pollutants
from tailing dams and from the site into waterbodies;

– increased costs related to dewatering procedures and
new capital expenditure, pollution clean-up or even im-
pacts on ecology, human health and casualties;
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Figure 1. Time series of annual maximum 30-day precipitation for
the Highland Valley open-pit copper mine in British Columbia, at
latitude 50.49◦ N, and longitude 121.05◦W, as estimated from the
NOAA-CIRES 20th century climate re-analysis. This mine is one
of the largest in the region, operating since the early 20th century.
The highest precipitation for any consecutive 30-day period in each
year is shown, together with a 30-year-moving window regression
to illustrate the trend.

– increases in insurance premiums;

– increased regulation, design standards and associated
costs;

– asset stranding if restarting operations may be finan-
cially, politically or physically infeasible.

Some specific loss events may be insured, while others may
not.

For example, in December 2010–January 2011, Queens-
land experienced heavy rainfall. This region has an active
coal mining activity, with a complex system of mining as-
sets and railways to bring coal to shipping ports. The event
led to long dewatering processes, railway impairment, sig-
nificant losses for mining companies and even spikes in coal
prices (Chambers, 2011; Regan, 2011). Overall, Queensland
coal production missed its target by 40 million tonnes in 2011
(Heber, 2013), and Australian production decreased for the
first time since 1981 (BP, 2016). This contributed to a record
price of USD 330 per tonne for hard coking coal (IBIS World,
2011; Bloomberg, 2011, 2015).

In February 1994, a 31 m high tailings dam at the Har-
mony Gold mine in South Africa failed due to overtopping
following a heavy rainfall event (Van Niekerk and Viljoen,
2005). Nearly 300 houses were swept away or damaged, and
17 people were killed. The subsequent investigation of the
disaster led to a reformulation of policies, design standards,
and monitoring requirements for tailing dams. These have
had an impact on the subsequent cost structure for managing
such risks, but to our knowledge have not triggered a signif-
icant evaluation of the methods used to manage the residual
risk from extreme rainfall events in the industry, other than
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the purchase of limited liability property and casualty, and
business interruption insurance coverage.

The potential impact of extreme climate events is present
even for mines not being actively operated, and may still exist
for mines that stopped producing many years ago. Estimating
potential damages associated with different levels of extreme
hydrologic events at each mining site is difficult. Some com-
panies are more financially exposed to these risks than others
based on geography, exposure and mitigation strategies.

Moreover, for a portfolio that is composed of assets at
many geospatial locations, one has to question whether the
hydroclimatic risk factors are correlated across sites, such
that many locations may experience floods or droughts in the
same fiscal year, thus amplifying the impact of water and cli-
mate risks assessed for each site. A significant amount of re-
search on the geographical impacts of the quasi-periodic cli-
mate variations suggests that many regions in the world can
experience persistent changes in risk, depending on the phase
of a climate oscillation. These regions may or may not be
spatially contiguous. For instance, during an El Niño or a La
Niña phase of the El Niño-Southern Oscillation, large parts
of the world experience floods or droughts (Dai and Tren-
berth, 1998). A portfolio risk analysis of exposure to climate
and water risks consequently needs to integrate over both the
space and time structures of climate to account for clustering
in the exposure to these risks, rather than considering them
to be independent in time and space.

Many companies have started commissioning consultant
reports as to their carbon and water footprints, and more re-
cently to their risk projected for various IPCC climate change
scenarios to the year 2050 or 2100 (Rajczak et al., 2016).
Unfortunately, the current generation of models of the cou-
pled ocean–atmosphere circulation, i.e. global climate mod-
els, when applied to the conditions of the 20th century, fails
to reproduce the type of memory and oscillatory behaviour,
as well as the spatial correlation structure, which is noted
in long observational records. Further, basic statistics (e.g.
mean, standard deviation and skew) of hydroclimatic ex-
tremes tend to be strongly biased relative to the 20th century
observations in most locations in the world (Woldemeskel et
al., 2012). An industry focused on bias corrections of these
statistics and the use of these corrections for future projec-
tions has evolved. A popular and potentially effective ap-
proach for “correcting” such biases is quantile mapping (Ra-
jczak et al., 2016), where the probability distribution of daily
rainfall from an IPCC model for a historical period is scaled,
quantile by quantile, to match the probability distribution of
rainfall recorded as historical data at a particular location.
This mapping is then extrapolated to the future period, a pro-
cedure whose reliability cannot be tested until the future oc-
curs, since we do not know the source of the bias in the
models used, and how that would propagate under extrap-
olation to a higher greenhouse forcing. Such point-by-point
bias correction methods are thus not able to address the bi-
ases in long-term quasi-periodic evolution of climate, and do

not constitute a reliable approach to future risk analysis since
they represent a brute force attempt to correct and extrapolate
selected output statistics, rather than addressing the deficien-
cies of the physics in the models. However, climate models
are also applied to the 19th and 20th century conditions to
build simulations called “re-analysis”. The re-analysis mod-
els are very similar conceptually to the IPCC models used for
future extrapolations, with one important difference. These
models use data assimilation of observed surface temperature
and pressure records over the historical period. This means
that the values of the climate variables computed by these
models are updated to match as well as possible historical
observations every single day. In effect, in this mode, the cli-
mate models are used to spatially interpolate the historical
climate observations.

Observed data are sparser as one goes back in time, and
during the world wars or other insurgencies, and hence the
uncertainty and bias associated with the “re-analysis” recon-
struction of the climate data fields varies as a function of
time and space. Nevertheless, the multiple sources of “re-
analysis” data that are available for daily rainfall, tempera-
ture and other variables, can be very useful for portfolio risk
analysis, since

1. they provide a common period of global data cover-
age of 100 or more years (depending on which climate
model is used);

2. as their temporal evolution is constrained by observa-
tions, they preserve the information on the phase of a
climate oscillation across the world, thus providing in-
formation on the potential for spatial and temporal clus-
tering of the frequency and intensity of hydroclimatic
extremes;

3. they give the ability to assess how the hydroclimatic risk
has evolved in the past in the best case scenario of an
application of a climate model, thus providing a base-
line against which future climate model-based projec-
tions could be scored.

Consequently, while the procedures we develop here could
readily use future climate projections, in this paper we
choose to develop examples that use long historical datasets
so that we can reveal how potential changes in portfolio risk
associated with rainfall extremes may have manifested over
the past century or longer, thus providing a changing baseline
for the risk that needs to be understood before undertaking an
extrapolation to the future.

This paper represents the first attempt to develop an in-
dex for the exposure of a geographically diversified, global
asset portfolio to the time-varying risk of climatic extremes
using daily global rainfall datasets derived from climate re-
analysis models. For the example presented here, we con-
sider the mining sector, and extreme rainfall of specified du-
ration as the risk factor. Once again, the analyses presented
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can be readily extended to consider the use of future climate
projections based on the IPCC climate change scenarios. In
this paper our emphasis is on exposing the potential for port-
folio risk associated with climate risk, rather than the poten-
tial change of this risk as per these scenarios. The limited
ability of these future scenarios to accurately inform extreme
rainfall at this point of time, and the need to consider globally
applicable uncertainty and bias correction methods to make
these scenarios usable, leads us to consider that extension in
a later paper.

The approach to the development of the index is described,
followed by applications to selected sites and mining com-
pany portfolios. Extensions to other climate events, and to
other applications, including simulation, value at risk anal-
yses and portfolio optimization are finally discussed. The
functioning of a web-based application has been developed
to allow a user to conduct all the analyses described and il-
lustrated in this paper. This web application is available upon
request from the authors.

2 Structuring a risk index for climate extremes

The risk associated with an extreme rainfall event depends
both on its probability of occurrence, and on the potential
financial impact. This latter includes direct operational loss
to the company, as well as potential liabilities from harm
caused to others. Yet, direct causality between climate events
and issues at the mine site may be hard to quantify, as pa-
rameters such as infrastructure design, mining methods, acid
consumption or water management policies all play a role
regarding the ways the impact of climate events are man-
ifest. For example, from a hydrological perspective, as ex-
emplified by Hailegeorgis and Alfredsen (2017) in the case
of urban run-off, the relation between extreme precipitation
events and extreme run-offs is complex, and its knowledge
and calibration depends at the minimum on a detailed de-
scription of the infrastructure of the catchment, its moisture
state, infiltration and exfiltration processes. Even when such
information is known, lags in response can be hard to identify
and uncertainties are important. Different approaches can be
taken at a site level to further knowledge, for a given site
including detailed numerical simulations or extensive data
analyses of long time series of both precipitation, run-off and
other site condition attributes (such as soil moisture). How-
ever, this requires data that are typically not available to peo-
ple outside the mining company, and even for the company
it may be difficult to estimate the extent of a projected loss
from an extreme event.

Moreover, especially for rare or catastrophic events, it is
difficult to develop a priori estimates of impacts in a global
study, asset by asset, as they depend on the details of several
site-specific attributes, such as local demography and devel-
opment level, or details of actual construction and monitor-
ing of infrastructure, information on which may not be easy

to develop. A well-run company may conduct a risk-profiling
exercise that identifies possible impacts contingent on certain
types of events. An investor may indeed ask for such dis-
closure, covering the events of concern and their estimated
annual probabilities of occurrence. However, if such infor-
mation is not available, one needs a consistent approach for
scoring potential impacts such that a fair index of exposure
can be derived for a particular portfolio, whether it is com-
posed of all mines in a particular geography, or a sector of
mining, or belonging to a specific company. We develop such
an approach here, and illustrate how the index derived can be
used to

1. understand the potential clustering of impacts in a se-
quence of years;

2. assess the impact of climate trends, production and price
cycles on the exposure index;

3. compare the portfolios held by two or more companies.

In the examples considered in this paper, we define extreme
events in terms of the T -year return level (level exceeded
by the annual maximum with a probability of 1/T in any
given year) based on available re-analysis datasets with at
least 100 years of data. Two candidate extreme events are
considered:

– a 1-day annual maximum extreme rainfall event with a
100-year-return period, i.e. an average 0.01 probability
of yearly occurrence (p= 0.01); and

– a 30-day annual maximum rainfall event with a 10-year
return period, i.e. an average 0.1 probability of yearly
occurrence (p= 0.1).

The 1-day extreme event is used as an example for rapid on-
set events that could induce spills and problems with tail-
ings dams for a mine, while the 30-day event is used to
consider events similar to ones that occurred in Queensland
in 2010–2011, that are the consequence of persistent mod-
erate to high-intensity rainfall events over a long period. A
specific 30-day extreme event may or may not include a 1-
day extreme event, in a given year. A site can experience an
event exceeding the target threshold several times during a
given year as long as averaging windows (e.g. 30 days) do
not overlap.

The motivation for the above choices is based in part on
engineering design and regulatory practice, and in part on
a desire to standardize exposure metrics. Depending on the
type of mine or industrial installation, design guidelines for
protection from flooding or extreme rainfall events typically
refer to an event duration and an annual exceedance fre-
quency corresponding to that duration. Thus, a holding pond
for potentially contaminated run-off from rainfall on a site
may be designed to hold the volume generated by a 30-day
rainfall event with a 10-year return period, while the main
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tailings dam may be designed to be able to capture the vol-
ume of water generated by a nominal 100-year, 1-day rain-
fall event. As previously stated, precipitation is only one as-
pect leading to leaks and infrastructure failures. The pro-
posed benchmarking process could be modified, in various
ways, for instance making use of the increased availability of
high-resolution remote sensing (in the absence of better in-
formation), to derive more precise run-off and vulnerability
information. This approach might in particular be suitable in
building tools and proxies for site case studies. This is be-
yond the scope of this paper, but considered as an extension
of the research. Keeping in mind the goals stated in points 1–
3, it is, for example, unclear that globally derived products
regarding attributes such as soil moisture, evapotranspiration
(e.g. Liu et al., 2012; Alemohammad et al., 2016), or even
directly run-off (e.g. Hong et al., 2007; Fekete et al., 2002;
Sheffield and Wood, 2007; Princeton Land Surface Hydrol-
ogy Group, 2017) would help us highlight the fact that tack-
ling uncertainty stemming from using short-term records is
all-important, or to derive a better index, given the complex-
ity of the sites considered. As was indicated in the introduc-
tion, given the short records typically used, there is consider-
able uncertainty as to the magnitude of the estimated 10- or
100-year rainfall events at a site. Since climate statistics are
not stationary, any given 30-year period of data used for such
inferences may not be representative of the next 30 years
when the business is operating. Since there is no easy way
to know a priori which specific period of record (e.g. 1940–
1960 or 1960 to 1975) was used for the design of facilities
at a particular mine or business site, it makes sense to refer
the threshold to the longest period of record available to us,
across all sites, and to then assess the space–time correlation
and hence portfolio exposure to thresholds estimated across
this entire period.

At each site, the nominal values corresponding to the
extreme events of interest are computed from the NOAA-
CIRES 20th century re-analysis V2c (also called 20CR) or
the ECMWF ERA 20C (also called ERA-20C) re-analysis,
which, to our knowledge, are the best precipitation datasets
according to our criteria (global coverage, relatively high
resolution and a long record) (Smith et al., 2014; Dee et
al., 2014; Irving, 2016). The 20CR provides re-analysis
rainfall data from 1 January 1851 to 31 December 2014
(NOAA ESRL, 2016) with a spatial resolution of 2◦× 2◦.
ERA-20C dataset provides daily precipitation data from
1 January 1900 to 1 January 2011, with a spatial resolu-
tion of approximately 125 km by 125 km (NCAR UCAR,
2016). The 20CR data were downloaded from the NOAA-
ESRL website (NOAA ESRL, 2016), while the ERA-20C
data were downloaded from the NCAR-UCAR climate data
website (NCAR UCAR, 2016).

As previously mentioned, since the spatial density of ob-
servations varies over time, the precision or accuracy of the
estimates by these models also changes. Further, precipita-
tion is highly variable in space, and hence a model with even

a 1.25◦ by 1.25◦ spatial resolution is too coarse to provide
useful information as to extreme rainfall. This is definitely
an issue, and motivates our approach to look at the number
of exceedances of a specified quantile at each location, rather
than at the absolute magnitude of the rainfall generated by the
model.

We expect that even the re-analysis models will be biased
relative to at-site observations. However, noting that quantile
mapping for bias correction of the IPCC models is seen as an
effective strategy, we expect that using the quantiles of the
model precipitation at a given location to define the threshold
of exceedance for extreme rainfall may provide a reasonable
internal self-consistency for the comparison of the relative
exposure across different locations. Specifically, we assume
that if the pth quantile of model-based annual maximum pre-
cipitation is exceeded by n days in a year at location i, and
the pth quantile of model-based annual maximum precipita-
tion at location j , is exceeded by m days at that location in a
given year, then the relative magnitude of n tom exceedances
at those two locations using the model-based data is a good
measure on average of the relative exceedances of the corre-
sponding pth quantiles of observed annual maximum precip-
itation at the two sites. Recall that we are using model-based
rainfall, since long records of observed rainfall at most of
the sites (mines) of interest do not exist. While these long
model-based records may not get the rainfall statistics at a
given site exactly right, the persistence of extreme wet or ex-
treme dry conditions across a region, or across a historical
period is likely to be connected to features of the large-scale
circulation of the atmosphere, which the models are expected
to resolve quite well. Thus, for our purpose of exploring the
spatial and temporal correlation of the risk of extreme rain-
fall event exceedance across many sites in a portfolio, and
the relative risk of exposure of portfolio A to portfolio B, the
approach chosen may be satisfactory. Uncertainty due to the
model structure and to the data assimilation strategies can be
explored by using multiple re-analysis models, and the ones
used in this paper are the ones that, as of the date of publica-
tion, provide the longest re-analysis climate records.

3 Approach

Given the discussion in the previous section, we consider an
event that triggers possible financial exposure of concern at a
given site to be indexed to the exceedance of the pth quantile
of annual maximum rainfall of a duration of d days. Depend-
ing on the investigator’s interest, one can consider exposure
relative to specified values of p and d at each site, the direct
and indirect financial exposure to each such event at each
site, and aggregate the exposure across sites, for each year
of the historical record to provide a time series of the index
of exposure for the portfolio of interest. Time series of the
index can then be analysed for cyclical or secular trends, ev-
idence of spatial clustering and the relative value at risk for
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portfolio A vs. portfolio B. The entire exercise could be re-
peated for different combinations of p and d to assess the
kinds of events that may lead to the most differences in rela-
tive exposure. These ideas are developed formally below, and
a web app that implements the analyses is available from the
authors.

3.1 Climate risk exposure

We first choose a fixed level of exposure for a given cli-
mate event (extreme rainfall or drought) expressed in terms
of its nominal annual probability of occurrence p over a year.
To explore the space–time structure of exceedances of this
threshold, we first identify the exposure frequency of the
event at a given asset, for each year of the historical record.

A first step is to identify the annual maximum of rain-
fall for duration d at location i from the climate dataset,
for each year of the record. This time series of annual max-
ima is denoted as Precipmax

it . The pth quantile Precipmax,p
i

of Precipmax
it is then estimated as the empirical quantile or

after fitting a generalized extreme-value (GEV) distribution
(Katza et al., 2002) to Precipmax

it .
Let us call Xj the cumulative rainfall over d days for a

window starting on day j ∈ [[1, J ]] of the year (in practice,
J = 365− d + 1 for a regular year, J = 366− d + 1 for a
leap year). Then, under the assumption that the {Xj } random
variables are independent and identically distributed (i.i.d.),
the extreme value theorem (Coles, 2001) tells us that calling
Mn=maxn(Xj ), if there exists sequences (an)> 0 and (bn)
such that M∗n =

Mn−bn
an

converges to a non-degenerate cumu-
lative distribution function (cdf) G, G is of the GEV family,
i.e. G can be written as

G(z;µ,σ,xi)= exp−
[

1+
ξ(z−µ)

σ

]− 1
ξ

, (1)

where µ is the location parameter, σ > 0 is the scale param-
eter and ξ is the scale parameter.

This distribution family can be divided into three sub-
families:

– for ξ > 0, it is of the Fréchet type;

– for ξ = 0, (limit of (2) when ξ→ 0) it is of the Gumbel
type;

– for ξ < 0, it is of the Weibull type.

This theorem is the counterpart of the extreme limit theorem
for block maxima, and is in practice used in a similar way:
to find an approximate distribution of Mn for n large enough
(in practice, n is fixed). The existence of the (an) and (bn) se-
quences is assumed, and while these numbers are unknown,
i.e., for n large enough, Pr(Mn<z)≈G( z−bnan

)=G0(z),
where G0 is a distribution of the same family, then the cdf
of Mn can be approximated (Coles, 2001). Obviously, crit-
ical assessment of the model fit needs to be performed, as
with any statistical inference.

In practice, the cdf of Mn is thus estimated by fitting a
GEV to the Precipmax

it time series obtained from data. While
the i.i.d. assumption does not hold in our case (moving win-
dow precipitation totals are obviously not independent), ad-
justments to the location and scale parameters can account
for the time clustering (Katz, 2013); the process is still valid
if the {Xj } are of the same family (which takes care of the
fact that the distribution parameters might vary depending,
for instance, on seasonality).

The GEV model can account for non-stationarity by mak-
ing µ, σ and/or ξ functions of time t , although allowing ξ to
vary generally makes convergence difficult. Then, µ(t) will
describe trends and cycles of the centre of the distribution,
while σ(t) will describe evolutions of the “size” of the de-
viations about µ (Katz, 2013). At a mine, study of the time
series Precipmax

it through GEV can enable one to understand
if and how exposure at different return periods has changed
over time and what consequences this can have relative to
the infrastructure design. Confidence intervals of such return
levels can also be estimated. The parameters, µ(t) and σ(t),
can be estimated using maximum likelihood, and different
forms of time variation (including constant for stationarity)
of these parameters can be explored, and the best model se-
lected using the BIC criterion (Katz, 2013).

Next we can develop a time series of physical expo-
sure at each mine i, by estimating np,di, as the number of
events of duration d, which exceed the stationary threshold
Precipmax,p,d

i at mine i in year t , based on the long-run data
(or for a mine operator, who has information on the original
data used, the data period used for design). Then the statistic

Nt (p,d)=
∑
i

ni,t (p,d) (2)

can be used to get insight into risk exposure at the portfolio
level.

The degree of clustering of exposure across mines in the
portfolio, and whether there are temporal trends or cycles in
such exposure can then be investigated using Nt (p). Clus-
tering can be assessed by comparing the probability distri-
bution of Nt (p) against what would be expected under inde-
pendence of occurrence of extremes at each mine, and trends
can be assessed via standard methods of trend and cyclical
analysis.

3.2 From climate exposure to financial risk

In the financial industry, a common measure of risk is the
value-at-risk or VaRq. It is defined as the potential loss (in-
curred by a given risk factor) over a certain time period
that will not be exceeded with a given confidence level q
(Webby et al., 2007; Yamout et al., 2006; Adriaens et al.,
2014). A conditional value-at-risk (CVaRq) is defined as
the expected value of the loss in case the VaRq is ex-
ceeded. More precisely, using the definitions from Sarykalin
et al. (2008), the VaR of X with confidence level α is
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VaRα(X)=min{z|FX(z)≥α}. The CVaR of X with confi-
dence level α is defined through a generalized tail distribu-
tion, as the expected shortfall if the loss event of concern
occurs:

CVaRα(X)=

+∞∫
−∞

zdF αx (z),

where F αx (z)= 0 when z<VaRα(X), and F αx (z)=
FX(z)−α

1α
if z≥VaRα(X).

We take an approach consistent with these ideas, while
recognizing that it may not be easy to estimate the direct loss
associated with different levels of events at each mining site.

Our strategy is to use a weighting of the ni,t (p) time series
to be able to compare portfolios to each other, rather than es-
timating actual VaRs, based on mine by mine potential loss
associated with the threshold event. For each mine site i, a
potential loss Li(p, d) is associated with the event with re-
turn period p. We assume that Li(p) can be decomposed as

Li(p,d)= C(p,d)Vi +D(p,d)Fi (3)

where

– C(p, d and D(p, d) are constants associated with the
rarity and duration of the event, that apply to direct loss
and external loss respectively;

– Vi is a measure of the financial value of the mine;

– Fi is a measure of the potential value of impacts on so-
ciety external to the mine, that the mine owner is liable
for.

Vi can for instance be the production rate of the mine, some
multiple C(p, d) of which may be lost due to disruption, for
an event with a probability of occurrence p in a given year.
Alternately, Vi could be the estimated net asset value (NAV)
of the mine, which may be relevant as a measure of the scale
of the asset at risk. Production loss could be used in the con-
text of an event expected to incur mine flooding, difficulty of
access, or cut in production due to drought. In such a case,
Li(p, d) would represent the value of the potential loss of
production due to disruption, and one would expect that as
p decreases (the event is more extreme), C(p, d) increases.
Similarly, NAV could be used to reflect potential closure of
the mine, or a long-term suspension of operations due to a
catastrophic event. The probability p considered for an in-
dex that uses this measure for defining Vi would logically be
lower than the ones used for a production-based index.

Correspondingly, one can develop arguments for D(p,
d) and Fi considering the population or ecosystems that
are likely to be affected as a consequence of the failure
of systems at a mine in the event of extreme rainfall. This
could include environmental impacts, health impacts, loss of
water services to a community and/or the financial impact

from mine closure. Available satellite remote sensing and
geospatial data bases provide information on hydrologic net-
works, population density, economic activity and ecological
attributes that could be identified downstream of each mine,
and used to parameterize Fi . In reality, it is difficult to de-
velop estimates for D(p, d), C(p, d) and Fi without insider
information. Therefore, in the examples developed in this pa-
per, we take C(p, d) to be 1, and D(p, d) to be 0.

Effectively, we assume that there is a valuation associated
with the mine as well as with the potential area of external
impact, and that for an extreme event of a specified rarity
(probability of occurrence), across sites, the loss is propor-
tional to that valuation. As an example, if a 100-year event
(p= 0.01) were to occur at two mines, with the market ap-
portioning USD 10 million to one asset and USD 100 million
to another asset, in the absence of other information, we are
assuming that the financial impact is directly proportional to
the relative valuations attributed by the market to each asset.
This implies that for a 100-year event that results in perma-
nent mine closure (for example), the resulting impact on the
company’s valuation as a result of the event at the second
mine would be 10 times greater than the same event at the
first. While this is unlikely to be an exact measure of finan-
cial impact, it represents a relative measure of exposure, and
hence provides a basis for developing a comparable index
across a portfolio. Where detailed information on the poten-
tial asset-level loss probability distribution and the direct re-
sulting financial impact is available, it would obviously be
better to use it directly. Varying p allows for the develop-
ment of a probabilistic risk profile across a portfolio. One
can see that for a given p, the contribution to the expected
value at risk can be readily evaluated, under assumptions of
a stationary climate, as pLi(p, d).

We can then define portfolio level financial exposure as

St (p,d)=
∑
i

Li(p,d)ni,t (p,d), (4)

which can be reframed as

S′i(p,d)=
∑
i

Vini,t (p,d) (5)

since C(p) is assumed to be a constant across all assets, and
for now we assume that we are only considering direct im-
pacts to the mine. Normalizing by the portfolio valuation, we
define

Rt (p,d)=
S′t (p,d)∑
i

Vi
, (6)

which provides a metric for the relative volatility or risk ex-
posure of different portfolios (companies or economic sec-
tors), normalized by their valuation. For instance, two dif-
ferent companies can be compared in terms of the quantiles
and trends of their respective Rt (p, d). Varying p also en-
ables the exploration of the variations in tail risks of a given
portfolio.
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For a specified annual probability of exceedance p, con-
sidered to be the design level for infrastructure at the mine,
the qth quantile, S′q(p, d) of S′t (p, d) can be considered to be
a measure of the VaRq for a mining company, and the corre-
sponding qth quantileRq(p, d) ofRt (p, d) provides a scaled
measure that allows for a comparison of the VaRq exposure
of each company as a fraction of their total production or
total portfolio value.

Finally, we can define a measure similar to CVaRq for the
potential expected loss in case an event with a probability
lower than p occurs with a probability (1− q) of the time as

CVRq (p,d)=
1

1− q

Rm(p,d)∫
Rq (p,d)

Rt (p,d)f (Rt (p,d))dRt (p,d). (7)

This is numerically evaluated as

CVRq(p,d)=
1

(1− q)(m+ 1)

{
Rq(p,d)+Rm(p,d)

2

+

m−1∑
k=q+1

Rk(p,d)

}
, (8)

where m is the number of years in the record, and Rk(p, d)
represents the kth ranked value of the series Rt (p, d), such
that Rq(p, d) corresponds to the qth quantile of Rt (p, d).

Similarly, one can define

CVS′q (p,d)=
1

1− q

S′m(p,d)∫
S′q (p,d)

S′t (p,d)f
(
S′t (p,d)

)
dS′t (p,d). (9)

Further, such a procedure can be used to generate inputs
for real-option analysis models to inform the value-at-risk
(Blanchet and Dolan, 2016). For different values of p, distri-
butions of npi,t , Nt (p, d), S′t (p, d) or Rt (p, d), can be used
to simulate extreme event impacts.

4 Example applications – frequency of events at the
mine level

We start with an example for the analysis of the Precipmax
it

time series for a given site using GEV distribution for thresh-
old selection. Consider again the Highland Valley open-
pit copper mine in British Columbia. Let us consider a
30-day event with a return period of 10 years. Using the
20CR dataset, we develop the yearly maximum 30-day pre-
cipitation time series Precipmax

it . The eXtremes package in R
(Gilleland and Katz, 2016) was used to estimate an appropri-
ate parametric model in the GEV framework associated with
this annual maximum time series. For the stationary assump-
tion, the 10-year event is estimated as 126.2 mm consistent
with the empirical quantile of 126.2 m, with a 95 % confi-
dence interval of [122.21; 131.19 mm].
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Figure 2. Effective 10-year-return level according to the non-
stationary GEV distribution for the Highland Valley mine.

We considered polynomial models in time of the order of 0
to 4 for both the location and scale parameters of the GEV
distribution, leading to 24 models to be tested, including the
stationary model. The best model based on the BIC criterion
is the quadratic model for the location parameter and a con-
stant for the scale:

µ(t)= 74+ 0.47t − 0.0039t2; σ = 3.4; ξ =−0.26.

A likelihood-ratio test between the stationary model and this
model leads to a p value of 4.85× 10−5, thus enabling us
reject the null-hypothesis of no trend. Standard diagnostic
tests support the applicability of the non-stationary GEV
model. The return-level plot on Fig. 2 shows the effective
return-level plot of a 10-year, 30-day rainfall event for the
non-stationary model in blue under stationarity assumption,
and for the model selected thanks to BIC in red. A non-
parametric trend function, as illustrated in Fig. 1 could po-
tentially reveal additional structure. If a more detailed char-
acterization of the decadal variations in the return level were
of interest at this site, the use of a spline basis function for the
trend in the location parameter may be appropriate, as shown
by Bocci et al. (2012), Padoan and Wand (2008), Nasri et
al. (2013) and Yousfi and El Adlouni (2016).

5 Example applications – portfolio level

In this paragraph, we provide three examples at the portfolio
level across a set of mining companies for which we have
information on asset locations and Vi .

1. The purpose of the first example is to explore whether
spatial and temporal correlation in the frequency of cli-
mate extremes leads to portfolio tail risk that may (a) be
substantially greater than expected from treating each
asset as an independent exposure or (b) have systematic
increasing or decreasing trends or persistence. For this
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case, we study the number of events affecting a given
portfolios of mines via the corresponding Nt (pd).

2. The second application highlights how different choices
for Vi can be used to provide insight into financial ex-
posure. Two weighting procedures are considered. One
uses 2015 production and 2015 average commodity
prices to attribute a value to each mine, and the other
uses NAV from broker reports. In the first case, for
mine i,

Vi =
∑
c

PcQi,c, (10)

where Pc is the average 2015 unit price of commodity,
c obtained from Word Bank (2016) andQi,c is the quan-
tity of this commodity produced by mine i in 2015.

In the second case, for mine i,

Vi = NAVi, (11)

where NAVi is the NAV attributed to site i in the broker
report chosen.

3. The third example highlights how the Nt (pd), S′t t (p,
d) and Rt (pd) time series can be used to compare the
tail risk that results from clustering for two portfolio
of mines, depending on how the assets are valued or
grouped.

Data on different mining companies were gathered for these
applications. The details of this data are provided in Ap-
pendix A (Figs. A1–A6, Tables A1–A6).

For the first application, we build portfolios of produc-
ing mining assets for four companies (BHP Billiton, 2016;
Rio Tinto, 2016; Barrick Gold Corporation, 2016; Newmont
Mining Corporation, 2016) using their annual reports. Using
BHP and Rio Tinto enables us to test our method on two large
portfolios, to measure whether or not their portfolios are di-
versified with respect to the risk of rainfall extremes. Barrick
Gold and Newmont Mining, two of the main gold miners, are
chosen because they are similar in terms of size and business,
and can be also used to illustrate applications (2) and (3).
In this case, a mining asset refers to a unique physical site.
The dataset includes mines that may be listed as “on care
and maintenance” but excludes undeveloped projects. Gen-
erally speaking, mining portfolios were disaggregated based
on public disclosure using our best judgement on what con-
stitutes an individual asset, for each mining company, and
the share of ownership in jointly owned assets by multiple
companies.

For the second application, the portfolios of mines defined
for Barrick Gold and Newmont Mining for the first appli-
cation are used first. These two companies produce mainly
gold and copper, and the reported production of these two
commodities is used to value each mine as indicated in
Eq. (5). Then, we consider NAV weighting for Barrick Gold

and Newmont, obtained from broker reports (TD Securities,
2016a, b). These portfolios of mining sites are different from
the ones defined for the first application; i.e. they are com-
posed of the assets valued in the broker reports used to ob-
tain NAV valuations (whether they are undeveloped projects,
producing assets, or even closed mines).

In total, for the first two examples, six different portfolios
of mines are considered (one for BHP and Rio Tinto, and
two for Barrick and Newmont). For the second application,
Barrick Gold and Newmont Corporation are compared using
the different weighting methods proposed (Vi =

∑
c

PcQi,c,

Vi =NAVi).
For the last application, portfolios of mine sites of 15 com-

panies for which we have asset-level NAV valuations from
TD Securities broker reports are used (including the ones for
Barrick Gold and Newmont Corporation already introduced
for the NAV weighing example in the second application)
(TD Securities, 2016a–o).

5.1 Frequency of events across a portfolio, Nt (p, d)

We consider a 1-day rainfall event with a 100-year return
level and a 30-day rainfall event with a 10-year return level.
For each of the aforementioned companies, we compute the
Nt (p, d) corresponding to the portfolios of producing min-
ing assets, using both the 20CR and the ERA-20C climate
datasets.

5.1.1 Trends and clustering in time

From studying the Nt (p, d) for the four mining companies
we find that

– statistically significant trends for increasing frequency
are observed in most of the cases, in particular when
using the longer 20CR climate dataset;

– there is a cyclical behaviour regarding the number of
exceedances of the thresholds defined.

In nearly all cases analysed (independent of the climate
dataset used), we observe a cyclical behaviour in the number
of exceedances. Figure 3 shows the location of the mining
assets for Rio Tinto. Figure 4 provides the time series of the
yearly number of 30-day extreme events across this portfo-
lio that exceed the 10-year return level at each site computed
using the 20CR climate dataset. For this case, we observe
a high number of events for the periods 1940–1950, 1980–
1990 and 1995–2005, while the 1950–1980 period is rela-
tively quiet. Thus, infrastructure designed and constructed
using the 1940–1950 record as a basis might have given this
company’s executives a sense of security during the 1950–
1980 period, while the following years might have appeared
as a period of high exposure. People tend to weight recent
history more than the past, which would yield cyclical invest-
ment and attention to risk management for such a company.
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Figure 3. Locations of productive Rio Tinto mining assets at the
end of 2015 (some assets overlap on the map).

Similar results for other companies are shown in Appendix B
(Fig. B1).

Significance of the trends for each of the Nt (p, d) time
series estimated was assessed using the Mann–Kendall test
(Helsel and Hirsch, 2002) for monotonic trend. Results are
provided in Appendix B (Tables B1–B2). For the 100-year,
1-day rainfall event, the number of events exceeding the de-
sign level at the portfolio level demonstrates statistically sig-
nificant (at the 5 % level) trends for all companies using
the 20CR data, and for Barrick Gold and Newmont using
the ERA-20C data. However, the trends computed are null,
which is due to the fact that a Sen Slope is computed as the
median of the slopes between all the points in a dataset, and
most of the years then correspond to zero values. For the 10-
year, 30-day event, the portfolio counts exhibit statistically
significant upward trends for all mining companies when us-
ing the 164-year-long 20CR data, and only for Rio Tinto
when using the 111-year-long ERA-20C data. Thus, there is
evidence for an increasing frequency of portfolio level expo-
sure for both the more catastrophic short duration event and
the long duration, more moderate event that we hypothesize
is related to persistent production disruption.

5.1.2 Clustering in space and time

Our key finding is that for all cases, the number of ex-
ceedances for each mining portfolio in many years is sub-
stantially higher than what would be expected by chance.
There is evidence of very fat tails for the portfolio risk.

Representative results are discussed here, with all results
presented in Appendix C. From Fig. 4, it is interesting to note
that there were 36 exceedances of a 10-year, 30-day rain-
fall event were experienced in a portfolio of 40 Rio Tinto
assets in 1981. We emphasize that a single asset can poten-
tially have multiple, distinct 30-day periods that can experi-
ence an exceedance of the 10-year event at the site in a given
year. Thus, in the worst years, the number of exceedances
may exceed the number of sites in the portfolio. For exam-

ple, in 1981, several Rio Tinto assets were hit twice. These
included the iron ore mines of the portfolio located close to
each other in the Pilbara region of Australia. However, hits
happened in various parts of the world, and 22 different sites
were hit (their geographic distribution is showed on Fig. 5).

Since on average one would expect four such exceedances
(p= 0.1× 40) in a year, 36 hits is truly a remarkable num-
ber, suggesting a very fat tail exposure for the portfolio com-
pared to what could be expected by chance. Practically, if
each such event were to lead to even a 12.5 % production loss
(based on the 1-month duration of the event and 0.5 months
to restore full production) at a mine on average, then the port-
folio would suffer a production loss of 35/40× 12.5= 11 %
for the year, compared to ∼ 1.2 % if there was no clustering
across mines and in time. The financial impact for the mining
company would depend on the fixed costs that would need to
be incurred irrespective of production (in the event of a pro-
duction stoppage) as well as the foregone revenue during the
production stoppage. We note that there are other years in
which very high counts are also recorded. Consequently, it
is useful to formally test whether or not the number of ex-
ceedances across sites could occur if the climate risk expo-
sure across sites were random and independent.

For this check, we compare the empirical cdf of the data,
F(Nt (p, d)) with the cdf that one may expect if the under-
lying process that generated Nt (p, d) were an independent
and identically distributed (i.i.d.) process, across the sites in
the portfolio. As we have defined extreme events in terms
of an yearly probability of occurrence p, at each site, the
theoretical process can be assumed to be a Poisson process
with λ=p. Therefore, for m sites, under the assumption of
an i.i.d process, the theoretical distribution would be one of
a Poisson process with λ=mp. For the Rio Tinto portfolio,
the number of exceedances with λ= 4 would be (9, 11, 13)
for probabilities of (0.01, 0.001, 0.0001) respectively. Thus,
under the independence hypothesis there is a near-null proba-
bility of 36 exceedances in a year, and in 15 out of 164 years,
the number of exceedances is greater than 13, suggesting a
very high incidence of clustering indeed. From Fig. 6, we
note that for the 100-year, 1-day rainfall event, depending on
the climate dataset used, the number of portfolio events of
concern at the 99th quantile is 5 to 6 times what may be ex-
pected by chance for BHP Billiton, and 2 to 3 times what is
expected by chance for other companies and quantiles. Simi-
lar results for the 10-year, 30-day event are presented in Ap-
pendix C.

To the extent the market tends to look at each mine as
an independent profit centre, generating value as a stand-
alone entity and with a subset of risks that are independent to
the other mines that it owns (and others such as commodity
risk which are present across the entire portfolio), our analy-
sis demonstrates that the exposure to extreme rainfall events
needs to be looked at across assets; clustering is a significant
issue and high-impact events at the portfolio level may have a
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Figure 5. Hits by location for the Rio Tinto portfolio in 1981 for a
30-day, 10-year rainfall event according to the 20CR dataset (dark
red corresponds to two exceedances, light red to one).

much higher probability of occurrence than anticipated under
the usual analytical mindset.

5.2 Extreme events and indexing of potential financial
loss at the portfolio level

In this section, we explore how the financial exposure of min-
ing companies may be manifest for the two types of rain-
fall events considered at the portfolio scale, by weighting
the event occurrence with an appropriate financial variable.
We focus on Barrick Gold and Newmont Corporations, two
major gold miners, because these two companies are similar
in terms of their core business, their diversity in geographic
distribution of asset locations, and their revenues. We con-
sider both a 1-day extreme rainfall event with a 100-year re-
turn level, and a 30-day extreme rainfall event with a 10-year
return level. All the computations in this section were per-
formed using time series built with the 20CR dataset, as it
has a longer record, with 164 years of data.

We use two weighting methods:

– one that values each mine using an estimate of its recent
annual production value

– one that values each mine according to a recent NAV
indicated in a broker report.

The method using production value is a measure of shorter-
term impact of the events, while the NAV method may be
used to measure more catastrophic losses.

5.2.1 Weighting with production

First, we develop an index using annual production data at
the mine level reported in Barrick Gold Corporation (2016)
and Newmont Mining Corporation (2016). We focus on the
two main commodities reported by these two companies:
copper and gold. We associate to each mine its production
multiplied by the average 2015 price of the corresponding
commodity, therefore obtaining an estimate of the mine’s
2015 revenue. Commodity prices (in nominal dollars) were
taken from Word Bank (2016). While the total sales revenue
mentioned in the 2015 annual reports of Barrick Gold and
Newmont amount to USD 9029 million and 7729 million re-
spectively, the estimated values based on this indexing pro-
cedure are USD 7738 million and 6240 million, which have
approximately the same ratio.

Using this weighting method, we then analyse the tail ex-
posure through the weighted time series Rt (p, d). Figure 7
shows the annual exceedance probability of exposure given
by the Rt (p, d) obtained for the Barrick Gold and New-
mont Corporation portfolios both the 1-year, 1-day event and
the 10-year, 30-day extreme event. Note for instance that
for the 30-day event, for Barrick Gold, over 99 % (46 %)
of the company’s total production value is exposed with a
probability of 1 % (5 %) per year, while for Newmont the
corresponding numbers are 90 and 58 % (recall that the to-
tal can theoretically go beyond 100 % has multiple hits can
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concern one asset in a given year). If we consider a 12.5 %
disruption in production due to each such an event, then
for Barrick and Newmont, the annual financial impact could
be as much as USD 9× 0.125× 0.99=USD 1.1 billion,
and USD 7.7× 0.125× 0.9=USD 0.87 billion with a 1 %
chance in a given year.

5.2.2 Weighting with net asset values

For this example, we chose two reports from TD Securities
written a few days apart: TD Securities (2016a, b). In the
following, a mine or a project is included as long as it appears
in the report. This leads to 19 sites mentioned for Barrick
Gold, and 12 for Newmont Corporation.

In a similar analysis to Sect. 4.2.1, note (see Fig. 8)
for instance that for a 1-day event, for Barrick Gold, over
29 % (7 %) of the company’s total production value is ex-
posed with a probability of 1 % (5 %) per year, while
for Newmont the corresponding numbers are 33 and 9 %.
If we consider a 10 % destruction of value (which is
likely a low number) due to each such event, then for
Barrick and Newmont, the annual financial impact could
be as much as USD 9× 0.10× 0.29=USD 0.26 billion,
and USD 7.7× 0.10× 0.33=USD 0.25 billion with a 1 %
chance in a given year.

5.3 Company comparison

We obtained asset-level valuation for 15 companies from
TD securities, performed around the same time (winter–
spring 2016) and present here the rankings ensuing from ap-
plying the method described using time series built using the
20CR climate data. We consider the 100-year, 1-day extreme
rainfall with a 100-year return level, with NAV weighting and
choose a portfolio tail-exposure level of q = 0.95 to exem-
plify how the S′q (Table 1), Rq (Table 2) and corresponding
CVq measures that are similar to VARq or CVARq can be
used to compare these companies exposure. A user may want

to vary q, using our web app to develop customized results
(in the following, a higher rank means a higher potential ex-
position).

A first thing that can be noted is that in our examples,
ranks vary significantly depending on the use of the S′t (p,
d) or Rt (p, d). For instance, Barrick Gold and Newmont
Corporation both appear amongst the most exposed compa-
nies (for both measures) when using S′t (p, d), but much less
when using Rt (p, d), which makes sense as these two com-
panies are rather large, but have a relatively diverse portfolio
in terms of their geographical locations and climate expo-
sure. A second observation is that the two indices (the one
akin to VaR and the one akin to CVaR) do yield some dif-
ferences in ranking, in particular for First Quantum Mineral.
This company has relatively few mines (nine assets are val-
ued in the broker report), with a relatively important geo-
graphical variability; some of these assets are small, while a
couple of projects are fairly large and with very high valua-
tion. This explains the discrepancy between the two indices.
Finally, for cases in which the number of hits recorded is too
low overall (e.g. Hudbay), our indices (and in particular the
quantile one) might not be usable when working with empir-
ical data.

6 Summary and discussion

Global water risk including scarcity, flooding, pollution and
anthropogenic climate change is of increasing concern to in-
vestors, companies, regulators and governments worldwide.
Despite the recognition that these factors exist, an approach
towards portfolio risk assessment that accounts for the geo-
graphical distribution of assets in a portfolio, and the associ-
ated exposure to climate extremes has not emerged. Such an
assessment is of growing interest in particular to long-term
investors, who are the owners of these multi-national busi-
nesses and currently lack a concrete methodology to compare
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Figure 7. Fraction of company production value exposed, as a function of annual exceedance probability for 100-year, 1-day and 10-year,
30-day events for Barrick Gold and Newmont based on the 20CR data.
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Figure 8. Fraction of company value exposed, as a function of annual exceedance probability for 100-year, 1-day and 10-year, 30-day events
for Barrick Gold and Newmont based on the 20CR data.

the relative risks associated with different companies com-
prising their investment portfolios.

This paper represents perhaps the first effort to address this
gap. A simple index that can be obtained through weighting
by appropriate financial measures of exposure was developed
and illustrated. Our hypothesis was that businesses with agri-
cultural supply chains, and the mining industry, were likely
to have significant spatio-temporal correlation in their asset-
level exposure that could potentially lead to a fat tailed ex-
posure at the portfolio level. The mining industry presented
an opportunity for exploring such risks, given that the loca-
tions of mines, and various attributes related to the mines can
be readily ascertained from publicly available information.
Further, as engineered enterprises, it is common for mining
companies to use risk-based design criteria for structures in-

tended to mitigate the impact of extreme rainfall-related haz-
ards at each mine.

While the short climate records typically used to estimate
the design parameters for such structures translate into con-
siderable uncertainty as to the appropriate level of design, the
fact that a structure is being designed with a nominal annual
probability of failure p directly translates into an estimate
of the residual risk that the enterprise is exposed to. Con-
sequently, if long climate records or projections are avail-
able, then one can estimate how the residual risk or expo-
sure at each site varies with time, and also if multiple such
events could happen in the same year across a portfolio of
mines. This observation opens up the possibility of explor-
ing the spatial and temporal clustering of risk exposure and
its manifestation at the portfolio level, whether the portfolio
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Table 1. Ranking of 15 companies based on S′0.95(0.01, 1) and CVS′0.95(0.01, 1) measures for a 1-day rainfall event, obtained using the
20CR dataset and mine valuation obtained from broker reports from TD Securities.

Company S′0.95 Rank S′0.95 CVS′0.95 Rank
(0.01, 1) (0.01, 1) (0.01, 1) CVS′0.95
(USD m) (USD m) (0.01, 1)

Agnico Eagle 272 8 8.05× 102 8
B2Gold 204.3 10 4.14× 102 13
Barrick Gold 974.15 2 2.63× 103 2
Capstone Mining 0 14.5 1.10× 102 15
Eldorado 374.66 7 7.25× 102 10
First Quantum Mineral 136.595 12 3.65× 103 1
Franco Nevada 452.015 6 7.66× 102 9
Goldcorp 669.6 4 1.42× 103 4
Hudbay 0 14.5 5.58× 102 11
Iamgold 25.84 13 2.67× 102 14
Kinross 578.5 5 1.38× 103 5
Lundin Mining 233 9 1.24× 103 7
New Gold 141.4 11 4.66× 102 12
Newmont 1011 1 1.72× 103 3
Teck Resources 832 3 1.25× 103 6

Table 2. Ranking of 15 companies based on R0.95(0.01, 1) and CVR0.95(0.01, 1) measures for a 1-day rainfall event, obtained using the
20CR dataset and mine valuation obtained from broker reports from TD Securities.

Company R0.95 Rank CVR0.95 Rank
(0.01, 1) R0.95 (0.01, 1) CVR0.95

(0.01, 1) (0.01, 1)

Agnico Eagle 5.67× 10−2 10 1.68× 10−1 12
B2Gold 8.95× 10−2 3 1.81× 10−1 9
Barrick Gold 6.43× 10−2 9 1.73× 10−1 11
Capstone Mining 0.00× 10 14.5 1.84× 10−2 7
Eldorado 8.95× 10−2 4 1.73× 10−1 10
First Quantum Mineral 1.43× 10−2 13 3.81× 10−1 1
Franco Nevada 7.54× 10−2 6 1.28× 10−1 15
Goldcorp 6.91× 10−2 7 1.47× 10−1 13
Hudbay 0.00× 10 14.5 2.09× 10−1 6
Iamgold 2.22× 10−2 12 2.29× 10−1 4
Kinross 9.41× 10−2 2 2.25× 10−1 5
Lundin Mining 6.54× 10−2 8 3.48× 10−1 2
New Gold 5.55× 10−2 11 1.83× 10−1 8
Newmont 8.56× 10−2 5 1.45× 10−1 14
Teck Resources 1.70× 10−2 1 2.55× 10−1 3

is composed of multiple companies or a single company; is
concentrated in a particular sector of mining, e.g. copper, or
is diversified; and whether it is largely based in one country
or is geographically diversified. An investor or a company
can then seek to understand and mitigate the portfolio risk
through appropriate hedging mechanisms.

Since at-site climate records are usually short, and it is
difficult to pull together global coverage, we considered the
use of global, gridded daily rainfall estimated by two differ-

ent climate re-analysis models, from NCAR with a 164-year
record, and from the ERA-20C with a 111-year record. These
models embody the same physics of ocean–atmosphere cir-
culation that is used in the models used for seasonal climate
forecasts, or for the projection of future climates. However,
they are run over a long historical period and are “corrected”
daily over that period to best match the observed surface
temperature and pressure data for each historical day. Since
the number of observations available varies over the histori-
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cal period, and the models have different spatial resolution
and correction schemes, their retrospective projections do
not always agree. Rather, just as the IPCC models for future
projections represent an ensemble of possibilities, so do the
retrospective or re-analysis simulations. We expect that the
large-scale features and teleconnections in these models will
be similar, but the precise magnitudes of events at specific
locations on specific days and years will not match. Conse-
quently, our approach considers the yearly number of events
that exceed a specified quantile computed internally for that
location for each such model. In other work, this quantile-
based approach has been recognized as effective at address-
ing the biases in each individual model’s projections relative
to observations.

Our investigations of selected, representative mining port-
folios demonstrate that there is significant spatial and tem-
poral clustering in the exposure of mines to the two criteria
we considered, a 100-year, 1-day annual maximum rainfall
event, and a 10-year, 30-day annual maximum rainfall event.
In some cases, for the worst year in the 164-year record, the
total number of exceedances of a 10-year event, i.e. with a
yearly probability of occurrence of 0.1 of the residual risk at
any given site, was very close to the total number of mines
under consideration. This happens because there are several
independent events in that year at multiple sites that exceed
the design threshold. The consequence is that the portfolio
exposure in this setting is much, much greater than the nomi-
nal pm (i.e. the probability of exceedance at each mine mul-
tiplied by the number of mines). There is also evidence that
the frequency of exceedance of such events at the scale of the
mine portfolio is increasing over time, and that pronounced
decadal variations in this exposure risk are notable for all
four companies analysed.

In this paper, we considered two financial metrics for
weighting the exposure to the residual risk at each site. These
were an estimation of the revenue generated by each mine
(calculated as production multiplied by the commodity price)
for the most recent year, and the NAV estimated for each
mine in a recent valuation completed by mining financial re-
search analysts. The exposure of the portfolio rather than a
single mine is of interest, in particular to indicate to an in-
vestor the potential relative impact of a temporary or perma-
nent production disruption as a result of the risks discussed
above on a given company’s financial performance. Since the
likely loss at each mine if the design event is exceeded is hard
to estimate a priori, even by the mining company, one needs
an approach that allows for an appropriate weighting of the
potential portfolio losses. We intend for the index we devel-
oped to be used for sensitivity analysis, to explore how the
total portfolio exposure may scale depending on various lev-
els of designed risk protection. Consequently, we assumed
that the loss at a certain level of design (average annual prob-
ability of exceedance of the annual maximum rainfall) is pro-
portional to either the revenue at each site, or to the NAV at
each site, for each event that exceeds the design level. To es-

timate the potential impact of temporary production disrup-
tions that a given mine may experience relatively frequently
(e.g. with a 10-year return period), we use an approximation
of the revenue by mine as a proxy to weight the number of
events of that magnitude experience at each site. For more
catastrophic events, e.g. those related to the 100-year annual
maximum rainfall that may result in permanent mine closure
(or a full write-off of a given asset), we weight the frequency
of such events in each year by the NAV of each mine, pro-
viding a measure of the portfolio exposure. By applying these
weights, we discovered the following for the portfolio finan-
cial exposure:

– typically increases over time, with decadal variations,
as expected given the space and time clustering of the
frequency of exceedances;

– the tail of the probability distribution of portfolio risk
for different companies may behave very differently.

These observations reflect geographical aspects of the struc-
ture of portfolio risk, and could motivate a company to hedge
such risks using parametric or index insurance mechanisms
or other financial risk management instruments. For an in-
vestor a characterization of the geographical nature of risk, as
well as that of portfolio risk can permit risk balancing strate-
gies through an appropriate weighting of companies, sectors
or geographies.

Furthermore, this same methodology could be employed at
the investor portfolio level rather than at the company level.
Investors often own a collection of companies, each with a
subset of assets that are inherently exposed to their own sub-
sets of risks. Investor portfolios could be disaggregated into
their individual components (asset by asset) and different
portfolio constructs could be assigned different risks based
on their exposure to extreme rain events. Rebalancing exer-
cises could consider effects over both space and time to the
risks considered in this paper.

A key question that emerges is whether these climate risk
factors actually translate into significant financial risks rela-
tive to other financial risk factors associated with investments
in mining or other multi-national enterprises. The answer to
this question requires a disclosure from mining companies
of their design processes, the associated residual risk and es-
timate of the loss incurred if a failure event occurs. A first
part of this process is an internal assessment of these factors
by mining companies, and hence a first-order impact of our
paper could be a self-examination of these issues by min-
ing companies, and the use of the resulting information to
re-evaluate their risk management processes. We know that
losses from some such events can be significant. Reported
mining-related losses from the extreme rainfall event in the
Atacama Desert in Chile in March 2015 were estimated to
be of the order of USD 1 billion insured, and a like amount
uninsured. This compares with the USD 1.6 billion in capital
expenditures associated with the desalination and pumping

www.hydrol-earth-syst-sci.net/21/2075/2017/ Hydrol. Earth Syst. Sci., 21, 2075–2106, 2017



2090 L. Bonnafous et al.: A water risk index for portfolio exposure to climatic extremes

project for mining in the same region, which attracted signif-
icant attention as an example of water risk. In the absence of
more detailed disclosure and internal assessment by mining
companies, the best we can do is provide relative rankings
of the financial exposure of different companies having dis-
tinct portfolios. Logically we expect extreme rainfall events
that result in catastrophic loss will impact a given company’s
financial performance; however, the analysis we perform in
this paper is solely theoretical and on a relative basis. Get-
ting more detailed information is therefore a prerequisite to
investigate the matter further, and in particular questions such
as the salience of climate risk relative to price volatility risk
for mining companies, and the feedbacks between these as-
pects (for instance a climate event leading to the stoppage
of large clustered mines would impact commodity prices).
Price volatility has been considered in discounted cash flows
analysis and real-option modelling of mining assets (see for
instance Garrido-Lagos and Zhang, 2012; Baurens, 2010),
and the inclusion of extreme events in such models is be-
ing explored by members of our team at Columbia; however,
linking actual events to losses in a direct way needs to be
done to fill the gap.

Social conflict is often cited as the most significant water-
related risk for mining companies. In our analysis here, we
considered a term in Eq. (1) for impacts external to the mine,
which the mine owner would be liable for (and hence would
directly impact that company’s financial performance). How-
ever, in the examples in this paper we did not develop esti-
mates for the potential liabilities that would come from the
ecological, environmental and social impacts downstream of
the failure of mine infrastructure. This is an area where we
plan to make further headway, in collaboration with WWF
Norway, who has developed a database that maps mines,
ecosystems and human habitations that are interconnected by
the natural drainage network, and hence are the potential for
direct impact if mine systems are overcome by extreme rain-
fall.

A second area of social conflict related to water emerges
not from pollution or flooding, but from water scarcity. For
an existing mine, this is manifest during a severe, sustained
drought. In this setting, even existing senior water rights or
water access arrangements can be strained. The basic idea of
residual risk for climate extremes that we introduced in this
paper can also be extended to the drought case, with the pro-
viso that a quantification of the competition for water under
these conditions that would be faced by the mining company,
and an assessment of their plans to deal with such contin-
gencies would be required. While some generalized products
(e.g. WRI, 2015) claim to provide estimates for such wa-
ter risks, we believe that mining companies need to assess
these risks internally relative to different severity and dura-
tions possible for droughts; integrate the analyses into their
risk management processes and provide disclosure of these
risks at a site by site level. This site level analysis could then

be aggregated to determine the financial impact from the in-
vestor and regulator perspectives.

We noted earlier that climate information is marked by un-
certainty and structured space–time variability. We were able
to tap a few realizations of such variability using two cli-
mate re-analysis products. However, many more such prod-
ucts are available from 1948 to present, 1979 to present and
1997 to present. For drought there are also global recon-
structions of palaeo-drought from tree rings and other prox-
ies, which provide a window into climate variability over
the last 5 centuries or more. The spatial resolution of cli-
mate information, as well as the fidelity to ground observa-
tions varies. Similarly, ground-based observations of vary-
ing duration are available. It is indeed possible to build non-
stationary, stochastic simulation models that integrate across
such sources of information and provide simulations that can
be used to reduce the uncertainty associated with the risk of
climate extremes that may vary across space and time. Our
past work has addressed some of these issues, and we expect
that the tools developed for those cases can also be applied
here. However, a bigger issue that needs to be addressed is
the estimation of potential financial loss and the attendant
uncertainty covering both impacts internal and external to the
mine.

To facilitate climate informed portfolio risk analyses, we
have developed a web-based app, using the R statistical plat-
form, which can accept the location of multiple sites – mines
or other assets in a portfolio; the specification of the duration
and rarity of the rainfall extremes of interest; estimates of the
financial exposure at each site; and other parameters from a
user, and allow them to compute the portfolio risk measures
presented here. A selection of the climate data that are avail-
able to use is also available.

Data availability. Climate data can be found at the following
links: 20CR daily precipitation data: http://www.esrl.noaa.gov/psd/
cgi-bin/db_search/DBSearch.pl?Dataset=NOAA-CIRES+20th+
Century+Reanalysis+Version+2c&Variable=Precipitation+Rate,
ERA-20C: http://rda.ucar.edu/datasets/ds626.0/index.html#cgi-bin/
datasets/getSubset?dsnum=626.0&action=customizeGrML&_da=
y&so=RgpNO&gindex=15. Broker reports are available on the
Thomson Reuters platform.
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Figure A1. Map of BHP Billiton 2015 mining assets.
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Figure A2. Map of Barrick Gold 2015 producing assets.

Appendix A: Portfolio description

In this appendix, a description of each of the mine portfolios
studied is presented. For each portfolio, asset locations are
provided. Estimated revenues introduced in Sect. 4.2.1 are
also shown here for Barrick Gold and Newmont Corpora-
tion. However, NAV values introduced in Sect. 4.2.2 are not
provided, as they came from a non-public data source.

A1 BHP Billiton (2015) mining assets (BHP Billiton,
2016)

Information on the BHP Billiton mining portfolio was ob-
tained by cross-referencing the mining assets mentioned in
(BHP Billiton, 2016) and the coordinates from an internet
search. It comprised 38 mine sites. It is important to note
groups of mines such as the Hammersley system in Pilbara
were disaggregated. The orebody mines in particular were
each considered as a given asset. However, due to the diffi-
culty of finding information, they were all assigned the coor-
dinates approximate coordinates corresponding to the Ham-
mersley joint venture.

As can be seen from the map below, there is a high clus-
tering in two regions of Australia: Pilbara and North East
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Figure A3. Map of Newmont 2015 producing assets.

Queensland, which are important iron and coal producing ar-
eas respectively.

A2 Barrick Gold 2015 producing assets (Barrick Gold
Corporation, 2016)

Information on the Barrick Gold mining portfolio was ob-
tained by cross-referencing the production information men-
tioned in Barrick Gold Corporation (2016) and the coordi-
nates from an internet search. It comprised 19 gold and cop-
per mines. Commodity price information was retrieved from
Word Bank (2016).

A3 Newmont 2015 producing assets (Newmont Mining
Corporation, 2016)

Information on the Newmont Corporation mining portfolio
was obtained by cross-referencing the production informa-
tion mentioned in Newmont Mining Corporation (2016) and
the coordinates from an internet search. It comprised 16 gold
and copper mines. Commodity price information was re-
trieved from Word Bank (2016).

A4 Rio Tinto 2015 mining assets (Rio Tinto, 2016)

Information on the Rio Tinto mining portfolio was obtained
by cross-referencing the mining assets mentioned in Rio
Tinto (2016) and the coordinates found through an internet
search. It comprised 40 mine sites.

A5 Barrick Gold mining assets valued in
TD Securities (2016a)

On the following map, asset symbols are proportional to the
share of the total NAV they represent Fig. A5.

A6 Newmont Corporation mining assets valued in TD
Securities (2016b)

On the following map, asset symbols are proportional to the
share of the total NAV they represent Fig. A6.
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Figure A4. Map of Rio Tinto 2015 mining assets.
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Figure A5. Map of Barrick Gold assets reported in TD Securi-
ties (2016a).
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Figure A6. Map of Newmont Corporation assets reported in TD
Securities (2016b).

The similarity between Barrick Gold and Newmont Cor-
poration in terms of the localization of their assets and the
value corresponding to given locations is here confirmed.
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Table A1. 2015 mining asset coordinates for BHP Billiton.

Asset name Latitude Longitude Primary Year Ownership
commodity

Goonyella Riverside −21.80889 147.97861 Coal 2015 50 %
Broadmeadow −21.8049 147.9845 Coal 2015 50 %
Daunia −22.05892 148.29836 Coal 2015 50 %
Caval Ridge −22.14199 148.06098 Coal 2015 50 %
Peak Downs −22.254 148.196 Coal 2015 50 %
Saraji −22.36944 148.29111 Coal 2015 50 %
Blackwater −23.68556 148.8075 Coal 2015 50 %
Norwich Park −22.61583 148.42944 Coal 2015 50 %
Gregory −23.17222 148.35639 Coal 2015 50 %
Crinum −23.17222 148.35639 Coal 2015 50 %
South Walker Creek −21.78457 148.47162 Coal 2015 80 %
Poitrel −22.04111 148.23444 Coal 2015 80 %
Mt Arthur −32.34833 150.90556 Coal 2015 100 %
San Juan 36.80151 −108.43064 Coal 2015 100 %
Cerrejon 11.018 −72.714 Coal 2015 33 %
Antamina −9.53917 −77.05 Copper 2015 34 %
Escondida −24.26889 −69.07466 Copper 2015 58 %
Olympic Dam −30.44 136.88889 Copper 2015 100 %
Pampa Norte Cerro Colorado −24.26667 −69.06667 Copper 2015 100 %
Pampa Norte Spence −24.26667 −69.06667 Copper 2015 100 %
Cliffs −27.31306 120.55306 Nickel 2015 100 %
Leinster −27.81424 120.70243 Nickel 2015 100 %
Mt Keith −27.23056 120.545 Nickel 2015 100 %
Mt Whaleback −23.36536 119.6754 Iron Ore 2015 85 %
Orebody 18 −23.386157 119.988638 Iron Ore 2015 85 %
Orebody 23 −23.386157 119.988638 Iron Ore 2015 85 %
Orebody 24 −23.386157 119.988638 Iron Ore 2015 85 %
Orebody 25 −23.386157 119.988638 Iron Ore 2015 85 %
Orebody 29 −23.386157 119.988638 Iron Ore 2015 85 %
Orebody 30 −23.386157 119.988638 Iron Ore 2015 85 %
Orebody 35 −23.386157 119.988638 Iron Ore 2015 85 %
Yandi −22.71889 119.06611 Iron Ore 2015 85 %
Jimblebar −23.38083 120.13806 Iron Ore 2015 85 %
Wheelarra −23.38145 120.13146 Iron Ore 2015 51 %
Area C −22.92362 118.97679 Iron Ore 2015 85 %
Yarrie −20.417278 120.0100995 Iron Ore 2015 85 %
Nimingarra −20.417278 120.0100995 Iron Ore 2015 85 %
Samarco −20.16149 −43.50515 Iron Ore 2015 50 %
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Table A2. Mining asset coordinates and attributable revenue per mine for Barrick gold for 2015.

Asset name Primary Commodity Latitude Longitude Ownership Attributable Unit
commodity production

Bald Mountain Gold Gold 39.94139 −115.543 100 % 1.91× 105 ounces
Bulyanhulu Gold Gold −3.22344 32.48616 64 % 2.74× 105 ounces
Buzwagi Gold Gold −3.861 32.67 64 % 1.71× 105 ounces
Cortez Gold Gold 40.16973 −116.608 100 % 9.99× 105 ounces
Cowal Gold Gold −33.6374 147.4053 100 % 1.56× 105 ounces
Golden Sunlight Gold Gold 45.90578 −112.022 100 % 6.80× 104 ounces
Goldstrike Gold Gold 40.98072 −116.381 100 % 1.05× 106 ounces
Hemlo Gold Gold 48.69755 −85.9252 100 % 2.19× 105 ounces
Jabal Sayid Copper Copper 23.85226 40.94042 100 % 6.00× 106 pounds
Kalgoorlie Gold Gold −30.553 121.45 50 % 3.20× 105 ounces
Lagunas Norte Gold Gold −7.94806 −78.2447 100 % 5.60× 105 ounces
Lumwana Copper Copper −12.2362 25.82228 100 % 2.87× 108 pounds
North Mara Gold Gold −1.47333 34.51639 64 % 2.87× 105 ounces
Pierina Gold Gold −9.44694 −77.5869 100 % 5.40× 104 ounces
Porgera Gold Gold −5.465 143.095 48 % 4.36× 105 ounces
Pueblo Viejo Gold Gold 18.93861 −70.1739 60 % 5.72× 105 ounces
Round Mountain Gold Gold 38.70389 −117.077 50 % 1.92× 105 ounces
Ruby Hill Gold Gold 39.52722 −115.987 100 % 1.00× 104 ounces
Turquoise Ridge Gold Gold 41.21639 −117.256 75 % 2.17× 105 ounces
Veladero Gold Gold −29.3714 −69.9528 100 % 6.02× 105 ounces
Zaldivar Copper Copper −24.2186 −69.0678 100 % 2.18× 108 pounds

Table A3. Mining asset coordinates and attributable production per mine for Newmont Corporation for 2015.

Asset name Primary Commodity Latitude Longitude Ownership Attributable Unit
commodity production

Ahafo Gold Gold 7.03076 −2.35953 100 % 3.32× 105 ounces
Akyem Gold Gold 6.35876 −1.02607 100 % 4.73× 105 ounces
Batu Hijau Gold Gold −8.96667 116.8667 48.50 % 3.28× 105 ounces
Batu Hijau Gold Copper −8.96667 116.8667 48.50 % 2.40× 108 pounds
Boddington Gold Gold −32.7417 116.3469 100 % 7.94× 105 ounces
Boddington Gold Copper −32.7417 116.3469 100 % 7.90× 107 pounds
Carlin Gold Gold 40.4651 −117.102 100 % 8.86× 105 ounces
CC and V Gold Gold 38.72387 −105.153 100 % 8.10× 104 ounces
Duketon Gold Gold −27.642 122.044 19.45 % 5.70× 104 ounces
Kalgoorlie Gold Gold −30.7781 121.505 50 % 3.16× 105 ounces
La Zanja Gold Gold −6.82902 −78.8941 47 % 6.60× 104 ounces
Phoenix Gold Gold 40.53917 −117.122 100 % 2.05× 105 ounces
Phoenix Gold Copper 40.53917 −117.122 100 % 4.6× 107 pounds
Tanami Gold Gold −19.9769 129.7139 100 % × 105 ounces
Turquoise Ridge Gold Gold 41.21639 −117.256 25 % 6.80× 104 ounces
Twin Creeks Gold Gold 41.25833 −117.169 100 % 4.03× 105 ounces
Waihi Gold Gold −37.393 175.838 100 % 1.19× 105 ounces
Yanacocha Gold Gold −6.99417 −78.5319 51.35 % 4.71E× 105 ounces
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Table A4. 2015 mining asset coordinates for Rio Tinto.

Asset name Latitude Longitude Primary Year Ownership
commodity

Gove −12.295 136.83 Bauxite 2015 100 %
Porto Trombetas −1.4717486 −56.3784885 Bauxite 2015 12 %
Sangaredi 11.1 −13.77 Bauxite 2015 23 %
Weipa −12.533 141.833 Bauxite 2015 100 %
Boron 35.0331722 −117.668687 Borates 2015 100 %
Bengalla −32.26667 150.85 Coal 2015 32 %
Hail Creek −21.5 148.4 Coal 2015 82 %
Hunter Valley −32.525 150.98333 Coal 2015 80 %
Kestrel −23.23333 148.36667 Coal 2015 80 %
Mt Thorley −32.64726 151.07113 Coal 2015 64 %
Warkworth −32.60694 151.09028 Coal 2015 45 %
Zululand Anthracite Colliery −28.1598 31.6875 Coal 2015 74 %
Bingham Canyon 40.52056 −112.145 Copper 2015 100 %
Escondida −24.26889 −69.07466 Copper 2015 30 %
Grasberg −4.05667 137.11361 Copper 2015 40 %
Oyu Tolgoi 43.767127 107.4462891 Copper 2015 34 %
Argyle −16.73056 128.38389 Diamonds 2015 100 %
Diavik 64.49643 −110.27715 Diamonds 2015 60 %
Brockman 2 −22.59717 117.21776 Iron Ore 2015 100 %
Brockman 4 −22.59717 117.21776 Iron Ore 2015 100 %
Marandoo −22.63806 118.13889 Iron Ore 2015 100 %
Mt Tom Price −22.76821 117.76625 Iron Ore 2015 100 %
Nammuldi −22.41222 117.3375 Iron Ore 2015 100 %
Paraburdoo −23.22917 117.57889 Iron Ore 2015 100 %
Western Turner Syncline −22.66272 117.59022 Iron Ore 2015 100 %
Yandicoogina −22.76389 119.225 Iron Ore 2015 100 %
Channar −23.30167 117.78889 Iron Ore 2015 60 %
Eastern Range −23.24389 117.65694 Iron Ore 2015 54 %
Hope Downs 1 −22.94667 119.12306 Iron Ore 2015 50 %
Hope Downs 4 −23.14583 119.57889 Iron Ore 2015 50 %
IOC 53.04112 −66.94422 Iron Ore 2015 59 %
Mesa A −21.68052 115.88057 Iron Ore 2015 53 %
Mesa J −21.75 116.24 Iron Ore 2015 53 %
West Angelas −23.19056 118.78806 Iron Ore 2015 53 %
Dampier −20.7064 116.7425 Salt 2015 68 %
QMM −25.0370535 46.9295919 Titanium 2015 80 %
RBM −28.6829452 32.1305466 Titanium 2015 74 %
RTFT 50.5457265 −63.3852768 Titanium 2015 100 %
Ranger −12.6851397 132.9092073 Uranium 2015 68 %
Rössing SJ −22.509068 15.0356483 Uranium 2015 69 %
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Table A5. Mining assets valued in TD Securities (2016a) for Barrick Gold.

Asset name Latitude Longitude Ownership

Bulyanhulu −3.22344 32.48616 64 %
Buzwagi −3.861 32.67 64 %
Cerro Casale 40.16973 −116.608 75 %
Cortez −27.7906 −69.2994 100 %
Donlin Creek 62.045 −158.198 50 %
Goldstrike 40.98072 −116.381 100 %
Hemlo 48.69755 −85.9252 100 %
Jabal Sayid 23.85226 40.94042 50 %
Kalgoorlie −30.553 121.45 50 %
Lagunas Norte −7.94806 −78.2447 100 %
Lumwana −12.2362 25.82228 100 %
North Mara −1.47333 34.51639 64 %
Pascua-Lama −29.3231 −70.0233 100 %
Porgera −5.465 143.095 48 %
Pueblo Viejo 18.93861 −70.1739 60 %
Turquoise Ridge 41.21639 −117.256 75 %
Veladero −29.3714 −69.9528 100 %
Zaldivar −24.2186 −69.0678 50 %
Other n/a n/a 100 %

n/a= not applicable.

Table A6. Mining assets valued in TD Securities (2016b) for Newmont Corporation.

Asset name Latitude Longitude Ownership

Nevada 40.4651 −117.102 100.00 %
Cripple Creek & Victor 38.72387 −105.153 100.00 %
Yanacocha −6.99417 −78.5319 51.40 %
Batu Haijau −8.96667 116.8667 44.60 %
Boddington −32.7417 116.3469 100.00 %
Kalgoorlie −30.7781 121.505 50.00 %
Tanami −19.9769 129.7139 100.00 %
Ahafo 7.03076 −2.35953 100.00 %
Akyem 6.35876 −1.02607 100.00 %
Conga M & I −6.08424 −78.3616 51.40 %
Merian 5.125 −54.5467 75.00 %
Other n/a n/a 100 %

n/a= not applicable.
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Appendix B: Clustering in time and trend

In this Appendix, we show the analysis of Nt (p) of all the
portfolios mentioned in Sect. 5.1.1. We consider both a 1-
day extreme rainfall event with a 100-year return level and a
30-day extreme rainfall event with a 10-year return level. We
also use both the ECMWF and NOAA re-analysis datasets
and therefore restrict the time range to 1900–2010 for con-
sistency. The p values from Mann–Kendall tests performed
on the time series are indicated above each plot (computa-
tions performed for the period 1900–2010).

The main conclusion to be drawn here is that while there
seem to exist a positive trend in the 30-day event cases, in
general, the significance level is lower when using the ERA-
20C dataset; the p values on the figure show that, at the 5 %
level, significant positive trends were detected almost sys-
tematically using the 20CR dataset, but that it is only true for
certain cases using the ERA-20C data. This emphasizes the
need to take a critical approach towards those results, and the
value of using multiple re-analysis models.

Furthermore, all the sen slopes for the 100-year event are
null, which is due to the fact that sen slopes are computed
as the median of the slopes between the points of a given
dataset.
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Figure B1.
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Figure B1. Time series Nt (p) of the yearly number of 1-day (left panels) and 30-day (right panels) extreme rainfall events hitting the four
mine portfolios computed from two climate datasets: 20CR and ERA-20C.
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Table B1. Mann–Kendall test results for the count of the number of extreme 30-day extreme rainfall event with a 10-year return level on four
mine portfolios, using both the NOAA and ECMWF climate datasets (computations performed for the period 1851–2014 for the 20CR data
and 1900–2010 for ERA-20C).

20CR ERA-20C

Company Slope Sen slope Slope Sen slope
sign (p value) sign (p value)

Barrick Gold + 0.017 (2.9× 10−10) 0 (0.14)
BHP Billiton + 0.016 (2.9× 10−10) 0 (7.4× 10−2)
Newmont Corporation + 0.011 (3.0× 10−9) 0 (0.18)
Rio Tinto + 0.042 (2.7× 10−17) + 0.019 (9.9× 10−3)

Table B2. Mann–Kendall test results for the count of the number of extreme 1-day extreme rainfall event with a 100-year return level on four
mine portfolios, using both the NOAA and ECMWF climate datasets.

20CR ERA-20C

Company Slope Sen slope Slope Sen slope
sign (p value) sign (p value)

Barrick Gold 0 (1.2× 10−5) 0 (2.0× 10−2)
BHP Billiton 0 (2.4× 10−3) 0 (0.65)
Newmont Corporation 0 (4.4× 10−5) 0 (1.1× 10−2)
Rio Tinto 0 (2.8× 10−9) 0 (0.18)
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Appendix C: Clustering in space

In this Appendix, we show the cdf’s corresponding to the
analysis of Sect. 4.1.2, considering both a 1-day extreme
event and a 30-day extreme event.

As previously evoked, in each case, the empirical distribu-
tion differs significantly from the theoretical Poisson process
associated, with, in particular, a fatter tail. This is confirmed
by the study of the rk ratios.

While BHP seems to be the portfolio with the most signifi-
cant tail exposure in terms of number of hits, one should note
that the level of disaggregation of the BHP mine groups we
decided on implied to consider each of the Orebody mines
(a group of mines close to each other in the Pilbara region)
as an individual asset; this may or may not correspond to an
investor’s perspective. In any case, from an investor perspec-
tive, what ultimately counts is the value exposed rather than
the number of events across a portfolio.
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Figure C1. Comparison of the cdf’s of the yearly number of 1-day (left panels) and 30-day (right panels) extreme rainfall events hitting
the BHP, Barrick Gold, Newmont and Rio Tinto mine portfolios with the corresponding theoretical cdf’s assuming independence of events
in space and time (Poisson processes). Empirical distributions were derived from the Nt (p) time series using the ecdf R function, which
computes an empirical cumulative distribution function. The 20CR dataset was used.
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Figure C2. Comparison of the cdf’s of the yearly number of 1-day (left panels) and 30-day (right panels) extreme rainfall events hitting
the BHP, Barrick Gold, Newmont and Rio Tinto mine portfolios with the corresponding theoretical cdf’s assuming independence of events
in space and time (Poisson processes). Empirical distributions were derived from the Nt (p) time series using the ecdf R function, which
computes an empirical cumulative distribution function. The ERA-20C dataset was used.
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Figure C3. Ratio of the actual number of the number of 10-year, 10-day extreme rainfall events fitting the four portfolio relative to what is
expected by chance, for three thresholds of the portfolio cdf.

Figure C4. Ratio of the actual number of the number of 10-year, 30-day extreme rainfall events fitting the four portfolio relative to what is
expected by chance, for three thresholds of the portfolio cdf.
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