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ABSTRACT: Climate-based streamflow forecasting, coupled with an adaptive reservoir operation policy, can
potentially improve decisions by water suppliers and watershed stakeholders. However, water suppliers are
often wary of straying too far from their current management practices, and prefer forecasts that can be incor-
porated into existing system modeling tools. This paper presents a simple framework for utilizing streamflow
forecasts that works within an existing management structure. Climate predictors are used to develop seasonal
inflow forecasts. These are used to specify operating rules that connect to the probability of future (end of sea-
son) reservoir states, rather than to the current storage, as is done now. By considering both current storage
and anticipated inflow, the likelihood of meeting management goals can be improved. The upper Delaware River
Basin in the northeastern United States is used to demonstrate the basic idea. Physically plausible climate-
based forecasts of March-April reservoir inflow are developed. Existing simulation tools and rule curves for the
system are used to convert the inflow forecasts to reservoir level forecasts. Operating policies are revised during
the forecast period to release less water during forecasts of low reservoir level. Hindcast simulations demon-
strate reductions of 1.6% in the number of drought emergency days, which is a key performance measure. Fore-
casts with different levels of skill are examined to explore their utility.
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INTRODUCTION

Climate-based seasonal streamflow forecasting,
coupled with an adaptive reservoir operation policy,
can improve decisions by water suppliers and
watershed stakeholders (Kim and Palmer, 1997).
Knowledge of future water supplies can be useful for
equitably allocating water deliveries between urban,
industrial, and agricultural users, as well as provid-

ing adequate releases for environmental and ecologi-
cal needs. When the predicted flood risk is high,
reservoir releases can be augmented to increase res-
ervoir void space for flood mitigation. When the pre-
dicted drought risk is high, forecasts can be used as
part of a formal or informal hedging and drought
planning strategy to limit water supply risk.

A number of regional water resource decision-
support experiments which incorporate streamflow
forecasts have been attempted in recent years. In

1Paper No. JAWRA-09-0091-P of the Journal of the American Water Resources Association (JAWRA). Received June 12, 2009; accepted
January 20, 2010. ª 2010 American Water Resources Association. Discussions are open until six months from print publication.

2Respectively, Assistant Professor (Gong) and Students (Wang, Condon, Shearman, Lall), Department of Earth and Environmental Engi-
neering, Columbia University, New York City, New York 10027 (E-Mail ⁄Gong: gg2138@columbia.edu).

JAWRA 574 JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION

JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION

Vol. 46, No. 3 AMERICAN WATER RESOURCES ASSOCIATION June 2010

watercenter




northern California, water suppliers have developed
the Integrated Forecast and Reservoir Management
system (Georgakakos et al., 2005). The system
derives management decisions from a combination
of forecast models with varying time scales, from
multi-decadal to hourly. In southern Florida, water
purveyors manage Lake Okeechobee with the aid of a
seasonal streamflow forecast tool. Forecasts are
developed 6 to 12 months in advance and then cou-
pled with a decision tree rather than a traditional
hydrologic rule curve to determine appropriate reser-
voir releases (Obeysekera et al., 2007). The Seattle
Public Utility District uses seasonal forecasts from
snowpack and maritime Pacific conditions in their
reservoir release policy. Seasonal forecasts are issued
and then used to enact a dynamic rule curve that dic-
tates reservoir releases (Basketfield, 2005). These
and other experiments constitute a growing set of
decision-support applications. For example, in 2005
Seattle successfully hedged against drought following
forecasts of an anomalously low flood season.

While these examples are both innovative and
effective, the widespread incorporation of streamflow
forecasts into standard reservoir management prac-
tice faces considerable challenges. Most of these
applications consider idealized decision frameworks
that are not directly cognizant of the operational
management framework that is being used. This lim-
its adoption of the innovations, as it is difficult to
assess the utility or skill of the forecasts directly in
the existing management context. The conservative
nature of most water managers, coupled with a
shared decision-making structure across multiple
government agencies, inhibits fundamental changes
in management practices. Typically, water managers
are interested in the benefits of seasonal streamflow
forecasting, provided that they work within their
established management structure, are easy to incor-
porate into existing system modeling tools, and
require little if any human intervention (NRC, 2005).
Yet at the same time, they want decision-support sys-
tems that are flexible and can deal with a variety of
different climatic scenarios. How best to achieve this
is still an open question. Here, we explore a limited
case study for the use of probabilistic streamflow fore-
casts with existing management structures in the set-
ting of the upper Delaware River Basin (DRB) in the
northeastern United States (U.S.).

SETTING AND NEEDS

The DRB is a 35,000 km2 area stretching from
upstate New York to Delaware Bay (see Figure 1),

with a total reservoir storage capacity of roughly
1.5 Bm3. Consumptive water use in the basin is domi-
nated by New York City (NYC), which is entitled to
3 Mm3 ⁄day supplied from three major water supply
reservoirs in the upper DRB (Cannonsville, Pepacton,
and Neversink) (see Figure 1). New Jersey is also
entitled to 0.4 Mm3 ⁄day withdrawn from the lower
portion of the Delaware River. Nonconsumptive uses
are highly valued, and include fishing, boating, and
rafting (Hydrologics, 2004). The annual value of cold
water fishing in the Upper Delaware region is esti-
mated at US$30 million (Maharaj et al., 1998). Upper
and middle portions of the river have been classified
as Special Protection Waters, and most of the main
stem upstream of Trenton, New Jersey, is included in
the National Wild and Scenic Rivers System.

River basin management is overseen by the Dela-
ware River Basin Commission (DRBC), which con-
sists of representatives from its four bordering states
and the federal government. The DRBC, in conjunc-
tion with the New York City Department of Environ-
mental Protection (NYCDEP), manages releases from
the three upper DRB reservoirs using rule curves
derived from historical data. As shown in Figure 2,
there are four curves that delineate five reservoir
storage state zones. The top curve represents a flood
threshold level for the system, while the bottom three
curves represent drought threshold levels for the sys-
tem. The corresponding storage state zones are desig-
nated L1 to L5, representing flood, normal, drought
watch, drought warning, and drought emergency con-
ditions, respectively. Furthermore, the L1 flood zone
is divided into three emergency release subzones for
flood events.

The operational mission of the rule curves is to
maintain adequate storage at all times to ensure
NYC’s 3 Mm3 ⁄day supply, by controlling each reser-
voir’s downstream flow release. Each day, the com-
bined storage of the reservoirs is determined, and
where this storage lies in relation to the rule curves
dictates the release rate for the reservoirs. The basic
management policy is to keep the rule curves fixed,
but allow for periodic revision of the release rates asso-
ciated with each storage zone. Seasonal release rates
for a recently implemented Flexible Flow Management
Policy (FFMP) (DRBC, 2007) are shown in Table 1.

A problem with this rule curve paradigm is that
reservoir management lags system stresses, i.e.,
release rates are not adjusted until after flood or
drought thresholds are exceeded. Also, while the cur-
rent rule curves may be effective at ensuring NYC’s
water supply, they arguably do so at the expense of
downstream stakeholders. NYC tries to keep reser-
voir levels at or near capacity to reduce drought risk.
This leads to periodic ‘‘spills,’’ which negatively
impact a renowned downstream trout fishery that
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needs a steady flow of cold water, but is frequently
starved for water under the current operation. Down-
stream residents are also negatively impacted as full
reservoirs have minimal void space for absorbing ele-
vated flows during major storms. Even though they
are not designed as flood control reservoirs, the

recent occurrence of several flood events has
prompted residents in the downstream floodplain to
call for the reservoirs to be used for flood mitigation.
These rigid constraints on the allocation of water in
the DRB have contributed to conflicts among users
and stakeholders.

FIGURE 1. The Upper Delaware River Basin (source: http://www.drbc.net).

FIGURE 2. Rule Curves and Storage Zones (L1, L2, L3, L4, L5) Governing the Directed Release
From the New York City Water Supply Reservoirs (source: http://www.drbc.net).
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We propose a framework for using probabilistic
forecasts to modify the existing rule curve manage-
ment structure in a way that could equitably benefit
all stakeholders, and thereby influence the entire
management process positively. Climate predictors
are used to develop seasonal streamflow forecasts
(SSFs) for the upper DRB. The forecasts are incorpo-
rated into a modified set of rule curve-directed
release rates, while using an existing reservoir sys-
tem model for scenario analysis and simulation. The
rule curve modification considers operation such that
the trigger to invoke a rule curve is a predicted end
of season reservoir state with a sufficiently high prob-
ability rather than the current stage. The initial mod-
ification presented here considers primarily the
reduction in drought risk and its impacts. Modifica-
tions to consider both flood and drought performance
measures are discussed.

The DRB stakeholders are potentially receptive to
the incorporation of climate information into their
existing practices. The DRBC recognizes that stake-
holder conflicts can be addressed by introducing inno-
vative approaches to water resources management in
the basin. For example, a subcommittee on Ecological
Flows was created in 2003 to more explicitly consider
conservation needs, which has facilitated the develop-
ment of the FFMP that helps protect the fishery

without substantially increasing drought risk.
Interim measures have been enacted to maintain
snowpack and event-based voids in the reservoirs
under specific circumstances for flood mitigation
(Collier, 2006). Finally, the DRBC has acknowledged
the relevance of climate change to the DRB, and the
need to consider future climate change scenarios
probabilistically, for effective long-term planning
(Fromuth and Quinodoz, 2001). Members of the
DRBC have expressed an interest in using SSFs to
complement their operational decision making, and
conservation groups have also expressed support for
such an approach (Gong et al., 2006).

The existing reservoir simulation model uses a
daily time step. So, one needs a mechanism to
develop not just probabilistic forecasts of the total
seasonal inflow into the reservoirs but also the disag-
gregation of these forecasts into daily flow sequences.
The approach considered here is to generate an
ensemble seasonal forecast from the conditional prob-
ability distribution, and to then disaggregate each
ensemble member into a daily sequence. Each daily
sequence can then be run through a system simula-
tion model using a specified operating rule, and the
end of period reservoir storage and any other desired
performance statistics can then be computed and
assembled into an empirical probability distribution

TABLE 1. Flexible Flow Management Plan for New York City Water Supply Reservoirs in the Upper Delaware River Basin. Directed
reservoir releases in ft3 ⁄ s are specified daily for each storage zone, to maintain adequate storage for ensuring New York City’s supply.

Winter Spring Summer Fall

Dec. 1-
Mar. 31

Apr. 1-
Apr. 30

May 1-
May 31

Jun. 1-
Jun. 15

Jun. 16-
Jun. 30

Jul. 1-
Aug. 31

Sep. 1-
Sep. 30

Oct. 1-
Nov. 30

Cannonsville storage zone
L1-a 1,500 1,500 * * 1,500 1,500 1,500 1,500
L1-b 250 * * * * 350 275 250
L1-c 110 110 225 275 275 275 140 110
L2 80 80 215 260 260 260 115 80
L3 70 70 100 175 175 175 95 70
L4 55 55 75 130 130 130 55 60
L5 50 50 50 120 120 120 50 50

Pepacton storage zone
L1-a 700 700 * * 700 700 700 700
L1-b 185 * * * * 250 200 185
L1-c 85 85 120 150 150 150 100 85
L2 65 65 110 140 140 140 85 60
L3 55 55 80 100 100 100 55 55
L4 45 45 50 85 85 85 40 40
L5 40 40 40 80 80 80 30 30

Neversink storage zone
L1-a 190 190 * * 190 190 190 190
L1-b 100 * * * * 125 85 95
L1-c 65 65 90 110 110 110 75 60
L2 45 45 85 100 100 100 70 45
L3 40 40 50 75 75 75 40 40
L4 35 35 40 60 60 60 30 30
L5 30 30 30 55 55 55 25 25

*Storage zone does not apply during this period. Releases will be made in accordance with zone L1-c.
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of that statistic. This overall approach is developed in
the next section.

CONCEPTUAL APPROACH

Goals and Objectives

The existing rule curves are based on an estimate
of the storage required on specific dates to meet the
maximum cumulative deficit from supply, anticipated
looking forward from that date during the critical dry
period in the historical record. Operational decisions
are therefore based on the current system state and
assumed future ‘‘worst case’’ low inflow conditions.
This is not necessarily the approach that leads to the
most efficient utilization of flows, even for a reservoir
system operated for seasonal storage, as is the case
for this system. The NYC operating rule actually
keeps the reservoir storage well above the rule curve
levels in most years, with drought warning, watch, or
emergency declared if different levels associated with
the rule curve are reached. Recognizing that this res-
ervoir system is primarily operated as a seasonal
storage system, using a probabilistic streamflow fore-
cast with current storage conditions provides the
opportunity to evaluate the probability of the maxi-
mum cumulative deficit over the current season that
could ensue under normal or modified release poli-
cies. This information can be utilized to offer a more
liberal release policy for environmental flows or for a
measure of flood control. Thus, with a skillful forecast
it may be possible to provide additional performance
for additional uses without increasing the risk of
NYC supply. Demonstrating that this may be feasible
is the goal of this study.

The specific objective is the design and application
of an incremental modification of the existing rule
curve-based operation, to use a probabilistic forecast
of seasonal inflows and their disaggregation into daily
sequences, with a specification of a trigger based on
the probability distribution of future storage. The
intent is to use such an approach with any ensemble
forecast, including perhaps a climatological forecast.
An associated objective is to evaluate the perfor-
mance of the rule curve modifications developed, and
the effectiveness of the SSFs.

Framework

The general conceptual framework is organized
into a sequence of steps illustrated in Figure 3, and
described below.

Future Seasonal Inflow Forecast. An m mem-
ber ensemble forecast of future season inflow xi (i =
1, . . ., m) given the current season observation of
climate state C0 is first developed. This corresponds
to m random samples from the conditional probability
density function (PDF) fx|C(xi | C0). The vector quan-
tity C0 can be represented by standard climate indi-
ces [e.g., El Nino-Southern Oscillation (ENSO)] or
regional fields of atmospheric or surface parameters
(e.g., zonal windspeeds over the Gulf of Mexico), or
rainfall forecasts from a General Circulation Model of
the Ocean and Atmosphere. By incorporating current
season climate information, the conditional PDF
fx|C(xi | C0) improves upon the practice of drawing a
sample from n observed values of future season
inflow yj (j = 1, . . ., n) over the n year historical
record, treating each of these values as equally likely
for the upcoming season. A skillful forecast xi condi-
tioned on current season climate observations is an
important first step for this framework.

Future Daily Inflow Forecast. Convert the
future seasonal inflow forecast into a future daily
inflow forecast sequence entering the reservoir. Each

1) Future Seasonal Inflow Forecast xi (i=1…m)
- Conditional on current climate state C0

3) Future Reservoir Level Forecast zf
i (i=1…m)

- Conditional on future daily inflow forecast
xd

i and current reservoir level zc
0

- Existing reservoir system simulation model
used to derive (n x q) matrix of possible
future reservoir levels zf for each
combination of inflows and initial storage

5) Performance Evaluation
- Performance metrics S specific to system

and stakeholders
- Hindcast simulations with policy

modifications vs. baseline simulations
without

2) Future Daily Inflow Forecast xd
i (i=1…m)

- Conditional on future seasonal inflow
forecast xi

- k-nearest neighbor sampling from
historical record yd

j (j=1…n)

4) Reservoir Release Policy Modification
- Conditional on future reservoir level

forecast zf
i (i=1…m) and current reservoir

level zc
0

- Maintain existing policy but perturb its
application

- Enact measures proactively

FIGURE 3. Conceptual Framework for Improving Reservoir Man-
agement Using Probabilistic Seasonal Reservoir Inflow Forecasts.
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seasonal forecast ensemble member is compared
against the historical record of future season stream-
flow values to identify a subset of years that most clo-
sely match the seasonal forecast value. One of the
years is randomly selected, and the daily streamflow
values over the forecast period for the selected year
are taken as one ensemble member of the future
daily inflow forecast. Specifically, obtain a probabilis-
tic forecast of future daily inflow with m ensemble
members xdi (i = 1, . . ., m) given the SSF xi, which
amounts to m random samples from the conditional
PDF fx

d
|x(x

d
i | xi). For each seasonal forecast ensem-

ble member xi, use a k-nearest neighbor approach to
randomly draw from the k-nearest yj values, with a
kernel function that gives higher probability to closer
values (Lall and Sharma, 1996). For the selected yj,
assign its observed daily inflow timeseries ydj as the
corresponding daily ensemble member xdi for that
seasonal xi value.

Future Reservoir Level Forecast. Use the
future daily reservoir inflow forecast sequence to
obtain a reservoir level forecast for the end of the
forecast season. Specifically, obtain a probabilistic
forecast of future reservoir level with m ensemble
members zfi (i = 1, . . ., m), which amounts to m ran-
dom samples from the conditional PDF fz

f
|x

d
,z
c

(zfi | xdi,z
c
0). Using an existing simulation model for

the reservoir system at hand, assemble a priori an
(n · q) matrix zf of possible future reservoir levels,
where each matrix element zfjl results from one reser-
voir system model simulation with a unique pair of
boundary and initial conditions. Inflow boundary con-
ditions span the n years of observed daily inflow ydj,
and reservoir level initial conditions span q uniformly
distributed values zcl (l = 1, . . ., q), where the zcl
value closest to the actual observed reservoir level is
taken as zc0. Then for each daily ensemble member
xdi, use its corresponding observed ydj along with zc0
to read the corresponding future reservoir level
ensemble member zfi from the matrix zf.

A key simplifying procedure for this conceptual
framework is to represent each future daily inflow
ensemble member xdi using the observed daily inflow
timeseries from a specific historical year ydj. Without
utilizing the historical timeseries, there is no means
of reliably disaggregating future seasonal inflows to
daily inflows. Furthermore, this technique allows for
a finite set of (n · q) reservoir system simulations to
be run once, before any forecasts are ever made. As
each daily streamflow sequence considered is one of
the historical set, this evaluation needs to be done
only once. Effectively we give each historical year a
conditional probability of occurrence given the cur-
rent climate conditions, and then compute the proba-
bility distribution of end of period storage considering

an initial storage and the daily sequence from a spe-
cific historical year which is sampled with the desired
probability. The matrix zf encompasses the entire
spectrum of possible future reservoir levels, and
replaces the burden of simulating the reservoir sys-
tem response to each of m ensemble members with a
simple lookup table approach.

Reservoir Release Policy Modification. Use
the future reservoir level forecast zfi (i = 1, . . ., m) to
determine reservoir release rates during the forecast
period. The basic decision rule is that if p(zf < z*) ‡ p*
then release at rate r = f(zf, zc0), where z* is a future
rule curve action threshold, p* is a critical probability
of z* exceedance, and r represents modified release
rates informed by predicted critical future conditions.
The set of rule curves and release rates associated
with the existing operational policy is maintained,
but the r value specified for each storage zone is
adjusted to enact measures proactively if p* is
exceeded, rather than reactively if and when the rule
curves are actually exceeded.

Performance Evaluation. This proposed frame-
work includes a set of decision parameters z*, p*, and
r that are specific to the reservoir system and its
management objectives. Similarly, one or more per-
formance metrics S can be developed that are of key
interest to the specific system and its stakeholders.
Effective metrics concisely and quantitatively assess
the hydrological, economic, or societal benefits
achieved by the applied framework. S may be multi-
variate if the reservoir system can serve multiple
functions, and may differ across reservoir systems
depending on their intended purposes. Hence each
application of this framework will have unique attri-
butes, so there is a need to work closely with system
managers and stakeholders to develop a meaningful
application.

Regardless of the specified S for a system, the
effectiveness of this proposed framework is easily
evaluated by comparing S for hindcast simulations
with the forecasts and policy modifications, to base-
line simulations without them. Hindcasts using dif-
ferent SSF techniques can also be compared to
evaluate the ability of the SSFs to provide new and
useful information.

UPPER DELAWARE RIVER BASIN CASE STUDY

A case study of our proposed conceptual framework
is developed for the upper DRB. To demonstrate
the overall framework clearly and succinctly, this
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application considers a limited management objective
of releasing less water when forecasted future reser-
voir levels are low, so as to minimize drought risk for
NYC. Only the spring ‘‘fill season’’ is considered,
when modest filling may be an indicator of subse-
quent summer drought.

Future Inflow and Reservoir Level Forecasts

The SSF developed for the upper DRB consists of
forecasted March-April (MA) average reservoir inflow,
issued on the preceding February 28. The MA season
has physically based potential for exhibiting stream-
flow predictability. Average streamflow during this
season exhibits the greatest magnitude and inter-
annual variability, which suggests winter snowpack
storage and spring snowmelt as a causal factor. The
winter season is particularly responsive to large-scale
climatic phenomena such as ENSO and the North
Atlantic Oscillation (NAO), so preceding winter atmo-
spheric and oceanic states are another potential
source of predictability (Barlow et al., 2000; Bradbury
et al., 2002).

A multivariate linear regression model is built for
forecasting MA reservoir inflow, using n = 57 years of
streamflow observations from 1949 to 2005, at United
States Geological Survey (USGS) station 01413500,
located just upstream of the Pepacton Reservoir. USGS
stations upstream of the Cannonsville and Neversink
reservoirs have shorter periods of record, and are
highly correlated with the Pepacton streamflow record
(r ‡ 0.9), so forecasts made for Pepacton inflow are
scaled and applied to the other two reservoirs as well.

Numerous candidate predictor variables are consid-
ered, including preceding winter streamflows, climatic

teleconnection indices (e.g., NINO3, NINO12, NAO),
local snow depth (SND) from the United States His-
torical Climatology Network (Williams et al., 2004),
sea surface temperatures (SST) from the Hadley Cen-
tre SST dataset (HadSST2) (Rayner et al., 2006), and
remote sea level pressure (SLP) and zonal wind (ZW)
from NCEP ⁄NCAR Reanalysis (Kalnay, 1996). Five
influential predictors are identified from among the
candidates using univariate correlation analysis fol-
lowed by stepwise multiple linear regression: Febru-
ary average local SND, January-February average
(JF) SST off the Pacific coast of the U.S., JF SLP over
the Gulf of Mexico, and JF 700 hPa ZW over the
Great Lakes and the Gulf of Mexico. Figure 4 shows
the gridpoint correlations between MA inflow and the
SST, SLP, and ZW predictor fields, including regions
over which the gridpoint correlations were averaged
to obtain the predictor variable for the forecast model.
Individual predictor variable correlation magnitudes
with MA inflow ranged from 0.32 to 0.61.

These five predictors represent physically plausible
regional mechanisms for influencing MA streamflow
in the upper DRB (Hartley and Keables, 1998; Brad-
bury et al., 2003; Miller et al., 2006). Seasonal storage
and melting of local winter snowpack plays an obvi-
ous role in the volume of spring discharge. ZW over
the eastern U.S. are related to winter storm tracks
which deposit snow in the DRB. Positive (negative)
ZW correlations over the Gulf of Mexico (Great
Lakes) in Figure 4 are consistent with winter cyclonic
activity originating near the Gulf of Mexico and
transporting moisture northeast into the DRB region.
Negative SLP correlations over the Gulf of Mexico in
Figure 4 are also indicative of this cyclonic activity.
Finally, positive SST correlations off the Pacific coast
of the U.S. in Figure 4 suggest that the subtropical

FIGURE 4. Linear Correlations Between MA Average Reservoir Inflow and Preceding January-February
Average Atmospheric Fields of (a) Sea Surface Temperature, (b) Sea Level Pressure, and
(c) 700 hPa Zonal Wind. Boxes indicate geographic regions for climate predictor variables.
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Pacific provides moisture that gets transported to the
DRB region via the subtropical jet stream.

The resulting seasonal forecast model explains
54% of the variance in observed MA inflow, and can
be expressed mathematically as:

xi ¼ b0 þ b1C1 þ b2C2 þ b3C3 þ b4C4 þ b5C5 þ e ð1Þ

where xi is the forecast MA seasonal inflow, b = b0,
b1, . . ., b5 are the regression parameters, C0 = C1,
C2, . . ., C5 are the five winter climate predictors, and
e ¼ N 0;r2e

! "
is a randomly sampled error term. A

semiparametric model as in Souza Filho and Lall
(2003) could also be used, if the assumption of nor-
mality or the linearity assumption in (1) were an
issue. Disaggregation to a MA daily inflow forecast
xdi using k = 1 nearest-neighbor sampling was used
in the applications for simplicity, using the historical
dataset of USGS streamflow observations for ydj.

The DRBC and associated government agencies
use the OASIS software package (Hydrologics, 2001)
to simulate daily flows through the upper DRB sys-
tem. This upper DRB model was first developed in
2002, and has since been continuously refined and
used in both a planning and operational capacity. It
is used here to obtain the (n · q) matrix of April 30
reservoir levels zf shown in Figure 5, where q = 20
uniformly distributed reservoir level initial conditions
zcl. The April 30 reservoir level forecast zfi is drawn
from this zf. m = 100 ensemble members are sampled
on February 28 to generate the probabilistic MA
inflow and April 30 reservoir level forecasts.

Reservoir Release Policy Modification

For this case study, reservoir release rates are
modified when the forecast of April 30 reservoir levels
fall below z* = 80% of usable storage, with probability
p* ‡ 0.8, i.e., p(zf < 80%) ‡ 0.8. The existing rule
curves trigger drought watch conditions on April 30 if
usable storage falls below 70%, so here preemptive
action occurs if the forecast April 30 conditions fall
below the more conservative threshold of 80% usable
storage. However, preemptive action only occurs if
the probabilistic forecast indicates a high likelihood
(p* ‡ 0.8) of falling below this threshold. Both the
level and the probability were chosen just for illustra-
tion here.

The preemptive policy modifications r = f(zf, zc0)
utilize the release rates associated with the existing
rule curves, but apply rates that correspond with
lower storage conditions than indicated for February
28 (zc0), since April 30 storage conditions (zfi) are
forecast to be low. For example, if reservoir levels are
in the normal (L2) storage zone on February 28, the
existing rule curves in Table 1 call for 1.84 m3 ⁄ s to be
released from the Pepacton Reservoir. But if the April
30 forecast calls for preemptive modifications, then
release instead at a lower rate of 1.56 m3 ⁄ s according
to the drought watch (L3) storage zone. The specific
release policy modification varies with February 28
storage zone, as shown in Table 2.

Performance Evaluation

As the operational mission of the upper DRB reser-
voirs is to ensure NYC’s water supply, the primary
performance metric of interest to NYCDEP is the
number of drought emergency days that occur. The
effectiveness of the proposed framework at reducing
this metric is evaluated via hindcast simulations of
the n = 57 year period of record using OASIS. Each
year a SSF is issued on February 28, and used to
inform any release policy modifications to be applied

FIGURE 5. OASIS Simulation Matrix Indicating Usable
Storage (percent of combined capacity) on April 30, as a
Function of February 28 Usable Storage Initial Condition
and Observed MA Average Inflow Boundary Condition.

TABLE 2. Release Rates for Pepacton Reservoir During MA
Forecast Period, With and Without SSF-Based Policy Modifications.

February 28
Storage Zone

Reservoir Release Rate (m3/s)

Existing Rule
Curve Policy

SSF-Modified
Policy

L1 (Flood) 2.41 1.56
L2 (Normal) 1.84 1.56
L3 (Drought Watch) 1.56 1.27
L4 (Drought Warning) 1.27 1.13
L5 (Drought Emergency) 1.13 1.13
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during the MA forecast period. The unaltered rule
curves are used for all subsequent months until the
next year’s forecast period. Results are compared
against a baseline simulation with no SSF and
release policy modifications, which yielded 1,253
drought emergency days.

A perfect hindcast simulation is performed in
which each year’s MA daily inflow hindcast is
obtained directly from the observed daily MA inflow
record for that year. In essence, actual April 30 reser-
voir levels are known at the preceding February 28
time of hindcast issuance, and used to determine
release policy modifications accordingly. Forecast
sampling errors are effectively removed, and the
release policy modifications can be evaluated without
the ambiguities associated with probabilistic forecast
skill. This represents an idealized limiting case where
p(zf < 80%) = 0 or 1, i.e., p* fi 1. This simulation
yielded 1,233 drought emergency days, a decrease of
1.6% from the baseline simulation. Thus the release
policy modifications adopted for this limited case
study result in modest but tangible water manage-
ment gains.

A second hindcast simulation is performed which
utilizes the multivariate linear regression forecast
model with climate predictors described above. The
release policy modifications are unchanged from the
perfect hindcast, but the effectiveness of this simula-
tion is now subject to the skill of the SSF. This simu-
lation yielded 1,251 drought emergency days, which
is virtually unchanged from the baseline simulation.
This result suggests that standard linear streamflow
forecasts for the upper DRB region may not be suffi-
cient to facilitate the proposed conceptual framework
proposed here for incorporating SSFs into existing
water resource management practices.

Results Using an Alternative SSF Technique

In an effort to improve forecasting skill, the MA
reservoir inflow predictand is refined before assem-
bling the multivariate linear regression model. The
intention is to remove factors that influence MA
reservoir inflow which are not directly related to pre-
season observed climate predictors. First, base flow xb
is removed by subtracting out the preceding February
flow rate. This is based on the rationale that winter
flows are derived primarily from groundwater which
persists into spring, while winter climate patterns
influence subsequent spring flows more than winter
flows directly, via snow storage.

Second, a k-means clustering analysis is applied, to
identify years with negative or nearly negative base
flow-removed streamflow. Such years are classified as
‘‘dry’’ years in which spring flows are dominated by

groundwater or base flow conditions which are not
designed to be predicted by the climate-based scheme
considered here. The remaining years are classified
as ‘‘normal’’ years in which flows are dominated by
atmospheric inputs that can be predicted by climate.
For this case study 11 ‘‘dry’’ years are identified
among the 57 year period of record.

We treat the ‘‘dry’’ and ‘‘normal’’ states separately
in subsequent model development. For the 11 ‘‘dry’’
years, the simple historical median of the base flow-
removed streamflow over all ‘‘dry’’ years is applied.
For the 46 ‘‘normal’’ years, a probabilistic multi-
variate linear regression model xn is developed
analogous to the original climate-based forecast
model xi in Equation (1), but for base flow-removed
MA streamflow.

The forecast model is completed by determining
the probability that the upcoming season will be ‘‘nor-
mal’’ (i.e., not ‘‘dry’’). A multivariate logistic regres-
sion analysis is performed, in which a binary MA
streamflow timeseries (dry = 0, normal = 1) is
regressed against yet another set of winter climate
predictors, yielding a probability pn that a particular
year’s set of predictor values results in a ‘‘normal’’
year. pn acts as a weighting factor for combining the
‘‘dry’’ and ‘‘normal’’ forecasts, after which base flow is
added back. The conditional mean of the forecast dis-
tribution, can then be identified as xi:

xi ¼ ð1% pnÞmd þ pnxn½ ' þ xb ð2Þ

xn¼bn0þbn1Cn1þbn2Cn2þbn3Cn3þbn4Cn4þbn5Cn5 ð3Þ

pn ¼ 1
1þ exp½bp0 þ bp1Cp1 þ bp2Cp2

þbp3Cp3 þ bp4Cp4 þ bp5Cp5'
ð4Þ

where md is the median value of base flow-removed
streamflow during ‘‘dry’’ years; xn is the linear regres-
sion based forecast for the ‘‘normal’’ years with
regression parameters bn = bn0, bn1, . . ., bn5 and cli-
mate predictors Cn0 = Cn1, Cn2,, . . ., Cn5; pn is the
probability of a ‘‘normal’’ year estimated using logistic
regression of the binary sequence of normal ⁄dry years,
with regression parameters bp = bp0, bp1, . . ., bp5
and climate predictors Cp0 = Cp1, Cp2, . . ., Cp5.
Uncertainty in the forecast distribution can be
represented by a convolution of the uncertainty distri-
butions of pn and xn, respectively.

Note that the climate predictor sets for this model
Cn0 and Cp0, and the original seasonal forecast
model C0 in Equation (1), are each identified inde-
pendently via univariate correlation and stepwise
multiple linear regression with their respective
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streamflow predictands xn, pn, and xi, and yield dis-
tinct regression parameter sets bn, bp, and b. How-
ever, all three climate predictor sets model Cn0, Cp0,
and C0 are similar in that they represent the same
variables, the same seasons, and similar geographic
regions (see Figure 4), as the same basic physical
mechanisms drive each predictand. This similarity
suggests the integration of Equations (2-4) into a
single generalized linear model for parameter esti-
mation and estimation using generalized maximum
likelihood.

The seasonal linear regression model xn explains
60% of the variance in observed MA inflow, but only
during ‘‘normal’’ years. The final logistic ⁄ linear fore-
cast model xi explains only 16% of the variance in
observed MA inflow over the entire period of record.
Forecast skill during strongly normal years improves
somewhat, but the constraint of using a single
representative climatological value for subsurface-
dominated years weakens the overall streamflow
forecast model.

A third hindcast simulation is performed which
utilizes this alternative logistic ⁄ linear regression, but
maintains the same release policy modifications as
for the previous hindcasts. This simulation yielded
1,238 drought emergency days, a decrease of 1.2%
from the baseline simulation. This result represents a
substantial improvement over the original linear fore-
cast model, and approaches the 1.6% decrease
obtained for the perfect hindcast simulation. Thus
forecast skill has a clear impact on this sample DRB
water management objective.

The improved skill of the logistic ⁄ linear regression
model is not apparent in the final set of predicted MA
inflow xi, which only explains 16% of the observed
variance. However, note that for this case study, pol-
icy modifications occur when forecast reservoir levels
are low, e.g., when forecast inflows are low. During
such conditions base flow is expected to be minimal,
so that flows are more likely to be climate-driven,
and the forecast model xi is heavily weighted toward
the more skillful ‘‘normal’’ year linear regression
model xn. In other words, policy modifications for this
sample management objective occur primarily during
years in which the SSF skill is relatively high.

CONCLUSIONS

The intent of this study is to develop and demon-
strate a general framework for incorporating SSFs
into existing reservoir management practice in a
readily applicable and broadly accessible manner.
The key concepts of this framework include (1) mak-

ing season-ahead reservoir inflow forecasts based on
observed climatic conditions; (2) expediting the reser-
voir level forecasting process by sampling from an
a priori set of system simulations that use the histor-
ical record to represent potential future conditions;
(3) making proactive decisions based on the fore-
casted future state, instead of reactive decisions
based on assumed future critical conditions as
embodied in rule curves; and (4) maintaining the
existing rule curve structure but perturbing its appli-
cation.

Framework parameters and performance measures
are specific to each reservoir system and its manage-
ment objectives. A limited case study is conducted for
the upper DRB to demonstrate the framework, which
focuses on reducing the number of drought emer-
gency days during the spring ‘‘fill’’ season. Physically
plausible spring SSFs are developed using climate
predictors during the preceding winter season, and
translated into spring reservoir levels forecasts using
existing DRB system models and rule curves. Fore-
casts of low reservoir levels prompt a mitigation of
the reservoir release rate associated with the rule
curve storage zones, as summarized in Table 2. Fifty-
seven-year hindcast simulations employing this
framework yield reductions in the number of drought
emergency days reaching 1.6%, although the results
are sensitive to the quality of the forecasts. Never-
theless, this upper DRB application serves as a
model by which the proposed SSF incorporation
framework can be readily adopted by other water
resource systems.

Note that the forecasting skill associated with a
simple linear regression model was limited, and
refinements to this linear forecast yielded notable
improvements in operational performance (i.e., num-
ber of drought emergency days) but not in terms of
the statistical measure of forecasting skill (i.e., frac-
tion of observed variance explained). This is an
important aspect to note as most forecast evaluation
methods consider only the usual second-order skill
statistics which may not match the relatively asym-
metric performance measures in actual reservoir
operation. Furthermore, only a single operational per-
formance measure was considered here, and gains
may vary depending on the measures actually consid-
ered. Nevertheless, more sophisticated techniques
involving local or other nonlinear regression models
may further improve forecasting skill, and further
reduce the occurrence of drought emergency days in
the upper DRB reservoirs. Varying the reservoir
release policy modification as embodied in the frame-
work decision parameters z*, p*, and r may also fur-
ther reduce drought risk for NYC.

In addition, alternative policy modifications, per-
formance measures, and forecast periods can be con-
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sidered to address different management objectives.
For example, forecasts during the autumn and early
winter when reservoir levels are relatively low could
be more useful for drought alleviation than forecasts
for the spring ‘‘fill season.’’ Increasing the lead time
of the SSFs would allow more time for policy modifi-
cations to take effect and impact reservoir levels
regardless of the season, if forecast skill is suffi-
ciently high. Forecasts of high future reservoir levels
can be used to trigger policy modifications that
increase the occurrence of directed reservoir releases,
to benefit downstream fisheries and create reservoir
voids for flood mitigation during years when drought
risk is low. The proposed framework can easily
accommodate any of these variations for the upper
DRB, and is flexible enough to potentially inform a
broad range of reservoir systems and management
objectives.

Finally, the framework presented in this study is
aimed at SSFs based on interannual climatic variabil-
ity, but is not designed to address the water resource
management response to anthropogenic climate
change. Future global climate conditions could con-
ceivably lead to historically unprecedented seasonal
streamflow values for the region being considered.
This framework may not sufficiently capture such
scenarios as the predicted daily streamflow sequence
is obtained by matching the forecasted seasonal
streamflow to the historical record. However, it is
also possible that anthropogenic climate change will
instead affect the frequency of occurrence of extreme
streamflow conditions that are still within the histori-
cal record. In this case our approach to daily stream-
flow disaggregation, and our overall framework,
would still be applicable, provided that the forecasts
accurately represent the changing conditions. In
either the interannual variability or the climate
change context, a forecast-based approach can lead to
potential gains in terms of improved system resil-
ience and adaptation. However, as argued and dem-
onstrated in Sankarasubramanian et al. (2009), novel
approaches to water allocation and management that
go beyond the ‘‘perturbation’’ of the existing manage-
ment structure demonstrated here may be needed to
effect greater societal benefits from seasonal and
longer streamflow forecasts.
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