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Abstract

Our goal is to create a simple, yet robust, statistical model which can be used to
quantify the risk present in a portfolio of mining assets. In pursuit of this goal we aim
at explaining a systematic approach which takes as input a model which is constructed
based on fundamental economic principles and simple statistical technniques (e.g. a
mixed-effect linear model with explanatory variables chosen from economic reasoning).
Additional enrichment is then imposed, based on input coming from a more detailed
model (built, for instance, from bottom up). And finally, the robustification step is
obtained by computing worst-case performance analysis among all models that are within
some distance of our simple model. This step quantifies the error induced by using a
simple-yet-tractable model, which might be incorrect.

1. INTRODUCTION

There is growing interest in financial risk associated with water scarcity in the mining
sector. This concern emanates largely from significant recent investments in desalination
plants associated with mines in Chile. Increasing capital and operating costs associated with
water for mining and mineral processing are seen as a potential challenge for the profitability
of the mines. Since this concern has been publicly discussed, one would anticipate that these
risk factors are priced into the credit risk ratings and net asset values of mining companies.
This note explores whether or not a top down approach that relates these valuation mea-
sures to publicly available financial and water scarcity indicators can reveal something which
factors are robustly reflected in the valuations.

Our goal is to provide an interface between financial indicators, which are inherent in a
top-down type analysis, and more specific bottom-up indicators which are built from specific
characteristics such as geophysical and operational attributes of the mines in consideration.

We provide a model for the financial risk quantification of mining companies with the
following characteristics:

a) Simplicity: The model must be easy to grasp and explain from a fundamental
perspective.

b) Scalability: Despite its simplicity, the model must be able to incorporate additional
covariates and risk factors — specially those coming from a more specific bottom-up type
approach.

c) Robustness: Provide a systematic approach to evaluate model misspecification.

We understand that risk is quantified relative to a portfolio of assets in the mining (say
gold) industry. So, we are interested in measuring the risk associated with holding a certain
portfolio which is a linear combination of assets for a specific time horizon, assuming that the



portfolio’s holdings remain constant during this time horizon. The types of models that we
are able to build are reliable for a medium time horizon (on the order of a few years, about
250 weeks). Beyond this time horizon, there are time in-homogeneities which are difficult
to quantify uniformly across all risk factors, even though the statistical properties of some
risk factors (e.g. climate related characteristics, incorporated in some of indices) might be
reliably estimated for longer time horizons. We are considering simulation models to handle
longer time horizons.

We have focused on the development of a top-down statistical model for financial valua-
tion. The model is a mixed-effect linear model with fundamental economic covariates. The
model is enriched with additional covariates which are obtained from a bottom-up method-
ology, but further enhancements will be provided in the next stages of the project when
additional information is processed from specific asset characteristics.

We shall first concentrate on describing the model, emphasizing item a). It is worth
emphasizing that one of the most interesting observations suggested by our analysis is that
water scarcity (which we believe is a relevant indicator of environmental risk for the mining
industry) is actually positively associated with market values. While this sounds counter-
intuitive, given that suitable water supply is rather important for the mining process, we
believe that such an association might result because operational mines which are “risky”
from the water scarcity perspective are so profitable that they are worth exploiting despite
the risk.

It is important to keep in mind that likely there is a systematic bias explaining this
positive association as follows. Developers likely recognize that water scarcity might pose a
threat. So, they might decide not to develop or operate a mine unless suitable conditions are
in place; however, if they decide to operate despite scarcity, the mine probably is substantially
profitable. Our data universe only includes mines that are operational, we do not include
mines that are not operational. In order to appropriately incorporate the impact of water
scarcity we should also consider non-operational mines (because maybe water scarcity is a
significant factor for not having a mine operating). Economic analysis of non-operational
mines is under development using real option valuation and the outcome of this analysis will
be reported in the future.

In our model we include over 50 companies, and we add specific financial information
from databases such as Bloomberg and SNL. A water scarcity index is used to capture some
of the environmental risk. We recognize that there are other environmental risk indicators
and we will include them as soon as they are properly developed from a bottom-up approach.
We expect additional explanatory variables arising from a parallel bottom-up construction
to be eventually incorporated into the simple model described in Section

In order to cope with high dimensionality issues (keeping in mind item b)), we plan to
pursue a Bayesian hierarchical construction, which can be suitably scaled if we are in the
presence of the right (conjugate) structures. We provide a short review of these types of
Bayesian models in Section [8.1

Finally, we describe a robustification methodology (corresponding to item c)). The
methodology that we described has connections to robustness notions studied in Economics
(see [7]) and Operations Research ([I]); our discussion here is based on [2].

The idea is to use our constructed models to quantify risk. In order to recognize that
these models, while simple, might contain structural errors, we discuss an approach based on
convex optimization which consists in finding the worst case risk measures among all models



which are within some distance of the simple model under consideration. The point, as we
shall explain in Section [} is that by choosing suitable discrepancies between models, we can
solve the robustification problem in terms of the baseline model. This is remarkable because
we just need to make sure that a more realistic model (or even the hypothetical true model)
is inside the feasible region in order to obtain a valid (i.e. correct) bound for the estimated
risk in terms of the baseline model.

One potential problem with this general robustness methodology is that the bounds
might be too large. In order to deal with this problem, we plan to use the information in
the bottom-up models to constrain the optimization problem. We explain in Section [4] how
constraints can be added so that the robustification problem still remains tractable.

In particular, to clarify, we plan to integrate the findings using bottom-up models and the
current top-down model in two ways. First, by introducing explanatory variables, specially
in the setting of environmental risk (in addition to the current use of the water scarcity
index). Second, we plan to inform the quantitative risk assessments using the robustification
procedure explained in Section [d] by introducing constraints suggested by the bottom-up
model, which might have higher fidelity for certain quantities.

We shall provide the theoretical foundations for c¢), and discuss some of the aspects re-
garding item b), such as the use of Bayesian models. In future months we plan to apply
these methodologies to our model. Regarding the basic model, item a), currently our model
is calibrated at a company level. The value of the individual (single) assets (mines) can
be obtained assuming that every variable that is unknown at the single asset level can be
obtained by applying a proportionality factor based on mine production (which is known).
Unfortunately, this type of assumption does not consider valuable assets which are not cur-
rently producing. In order to address this problem, in the next update of our model we
will incorporate an additional factor based on real option valuation methodology, which is
briefly discussed in Section We point out that real option valuation is yet another way
in which we can further add constraints to the optimization problem which must be solved
to robustify our solution as discussed in Section [

2. A SIMPLE Tor-DowN MODEL

The universe of companies used were a subset of names taken from the NYSE Arca Gold
Miners Index (GDMNRT), for which we were able to acquire (reasonably) complete informa-
tion of their gold mining exposure (from the SNL database). Financial and other indicators
were obtained from Bloomberg.

We recognize that the data selection is representative of a particular population of com-
panies, namely, those who have reasonably complete reporting practices and therefore this
selection might induce biases. We believe, however, that this is precisely the type of universe
which might be relevant for investment analysis within a risk profile consistent with that of
institutional investors seeking controlled variability and strong long term returns. Therefore,
as long as the findings in this report are used for the purpose of aiding such investor, the
potential bias is not a significant source of concern.

A large number of production and financial variables were considered. In the end, the
model selected uses the following basic variables:

Basic Variables.



e Water Scarcity Index (the sum, over mines, of mill capacity per-mine x BWS ratio of
mine’s location). The BWS ratio is the ratio of mine water use to water available in
the area in which the mine is located.

e Underground Capacity Value (tons per year) x Price of Gold (per ton)
e Open Pit Capacity Value (tons per year) x Price of Gold (per ton)

e Net Income (in millions of $)

e CAPEX (in millions of $)

e Net Debt (in millions of )

2.1. The Models Considered.

We fit two linear regression models. We aim at obtaining a model for Y; (¢), the market
value (assets and equity) of a company at time ¢. The X; (¢)’s (predictor variables) are given
according to the basic variables described above.

1. A fixed effect model (no specific effect for each company)

d
Yi(t) =a+ Z/BkXi,k: (t) +ei(t),
k=1

where i represents the i-th company, a represents the intercept, and the X, ; (-)’s are
the basic variables. The time scale considered is of the order of two to three months.

2. A mixed effects (adding a random effects per company) which takes the form,

d
Yit) =a+Ui+ > BiXik(t) +ei(t),
k=1

where ¢; (t) captures errors within a company, across time, and Uj is a random variable
which incorporates covariance structure between companies, and one assumes that, for
all ¢, 1, k

Cov (U, X1 (t)) = 0. (1)

Model 1 is the departing point in our construction. Everything that appears in the right
hand side of the equation has a direct economic interpretation. The random effects model
(Model 2), is parsimonious and a natural extension of Model 1, but it is useful to keep Model
1 as a guiding fundamental tool given that its predictive power and the analysis of variance
is earlier to interpret there. For more information on mixed effects models, see [6].

3. MoDEL OUTPUT

The Model 1 produced an R? value of 72.9% (the adjusted R? is 72.7%) with p-value for the
F statistic on the order of 1073, so there is certainly strong evidence to reject the hypothesis
of no relation between the predictors and the value of the companies.

The coefficients are given next, all the p-values are substantially smaller than 1074,
indicating that the coefficients are significant (given the model). It is important to note that
the signs are well aligned with the fundamental interpretation of the corresponding variables.



ModellJANOVA)  SumSq DF F p&ralue
WaterBcarcityn. 20.45 1 21.7 | 3.53x10"kb
Undergrnd@ap. 243.33 1 258.5(1.58x107b2
OpenPitLap. 226.82 1 240.9 (2.13x107p49
Net@ncome 32.03 1 34 7.1x10°®
CAPEX 129.47 1 137.514.73x107B0
Net@Debt 94.38 1 100.3|1.15x107eR2
Error 1061.8 1128
Model@d Estimate SE tStat p&alue
(Intercept) 108.04 31.35 3.45 0.0006
WaterBcarcitydn 1.89 0.4 4.66 | 3.53x107(b
Undergrnd@ap. 2.41 0.15 16.08 |1.58x10/62
Open@Pitap. 2.05 0.13 15.52 |2.13x107z49
Netncome 1.89 0.33 5.83 | 7.1x10"®
CAPEX B.27 0.71 F11.72 {4.73x107B0
Net@Debt Fl.4 0.14 10.01 [1.15x107R2

The Water Scarcity Index coefficient has a positive sign. We have provided a possible ex-
planation for this finding in the Introduction. For the particular case of the Water Scarcity
Index, we note that it has a direct R? equal to .437 (by direct we mean the R? that would re-
sult if we only included Water Scarcity Index as the sole variable in the regression model.) If
the Water Scarcity Index is removed from the model, the R? is reduced slightly, to 72%. So,
from this perspective, the predictive power of water scarcity, given the rest of the covariates,

although significant, is low.

The ANOVA analysis given next provides an indication of the variability explained.
The output of Model 2, once again with p-values smaller than 107 is summarized in
the next tables, first we show the coefficient estimates (once again note that the signs are in

agreement with the fundamental interpretation of the variables),

Model2 Estimate SE tStat
(Intercept) 24.5 382.4 m.1
WaterBcarcitydn. 2.93 0.65 4,54
UndergrndTap. 2.31 0.25 9.17
OpenfPitiTap. 2.35 0.17 13.94
Netdncome 1.53 0.22 7.07
CAPEX B5.54 0.55 .99
Netfebt ?1.86 0.11 FL5.99

and the variance parameters of the random effects are given next:

Model2 Estimate Lower Upper
Intercept 2335.8 1862.6 2929.2
Residuals 0.91 0.88 0.95




Finally, we show the behavior of the residuals, which show normal-like characteristics and
relatively little structure, thus reassuring that normality can be used for prediction in the
quantitative risk model.

Histogram®fMixedEffe
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4. ROBUSTIFICATION

Ultimately, we will use the model for performance analysis, including risk measures, via
Monte Carlo simulation. Our goal in this section is to explain how to estimate potential
errors which arise from our model selection.

If we ultimately measure the risk associated to a portfolio of assets, then the underlying
model is the probability distribution induced for the variable L, which represents the losses
of a given portfolio of mines during a given time horizon. In turn, such a distribution is
implicitly obtained by the large model described in the previous paragraphs. One might
compute, for example, the Value-at-Risk (VaR) of the portfolio loss, L by running Monte
Carlo simulations. If the associated distribution differs from reality, then the output of the
simulation, namely the estimate of VaR, will generally be incorrect. The difference between
the correct VaR and the incorrect VaR is, in this case, the impact of the incorrect model
assumption.

Note that in our framework, any stochastic simulation comprises two types of errors:

1) Stochastic error due to the generation of only a finite number of replications or scenar-
ios, which is only an approximation of any given probabilistic model (which may correspond



to an infinite number of scenarios),

2) Model error due to a misspecification of the probabilistic model away from reality, as
described above.

In turn, the error of type 2) might occur because one assumes a “correct” parametric
family of models (say, for example, multivariate Gaussian random variables) and such family
is estimated from finitely many samples and therefore is subject to statistical error. Or,
perhaps the parametric family is simply incorrect and therefore, inference based on such
family will likely be incorrect. Even if these two situations are conceptually different, they
both are treated in the same way in our setting, namely, for whatever reason there is a
misspecification of the probabilistic model relative to reality. Moreover, even if one takes a
non-parametric approach, still there will be error of type 2) in the sense that the probabilistic
model will differ from reality.

We also note that an incorrect model assumption can arise for reasons other than the
lack of data. One instance is non-stationarity.

Our focus is on the error of type 2); typically the error of type 1) can be addressed by
increasing the number of scenarios generated.

Our methodology aims to tackle a large class of uncertainties contributing to error of
type 2) under a unified framework. It borrows ideas from the active research area of robust
modeling. Techniques in this area have been developed by multiple communities, including
the work of the Nobel laureates Hansen and Sargent, in the area of economics.

5. MATHEMATICAL DESCRIPTION

To describe our method mathematically, let us use X to denote a random variable (or random
vector) governed by the probability model P. The outcome of X describes a given scenario
in our Monte Carlo simulation. Think of X as a risk factor (or risk factors with a given joint
distribution).

Let h(X) be a function of the risk factors, X, for example, the loss of an insurance
portfolio at the end of a the year given the aggregated claims X. The target risk quantity
of interest is E[h(X)], the expected value of h(X) under P.

The input model is typically specified to be some parametric model, say Py. In this case
we write Eg[h(X)] as the target quantity using the model Py. For instance, our current
setting, Py denotes the the simple model we fitted in earlier sections fit using the financial
and water risk data; h(-) is composition of a portfolio, and X is a vector representing the
values of the companies, and L = h(X). We can also handle quantiles, but we shall keep
the discussion simple for the moment.

Model error arises when the true model, governed by the probability distribution Pjye,
differs from Fy. To robustify our output, we proceed as follows. First, instead of specifying
Py as our input, we list our available (partial) information on Py, via constraints.

Two examples of constraints that can be used to describe the uncertainty in
the underlying model are:

1. Statistical discrepancy: suppose that the modeler has adopted a particular Py, but
he/she acknowledges a non-zero distance of Py from the truth Pj.,.. The difference
between these two distributions can be represented via the notion of statistical dis-
crepancy, i.e. a notion that differentiates between probability distributions and is not
restricted to a fixed parametric class. One common example of statistical discrepancy



is the Kullback-Leibler (KL) divergence, also known as the relative entropy. This is

denoted
dPtrue - B dPtrue lo
ap, |~ % Tap, %% Tdm,

where dPy./dPy denotes the likelihood ratio between the distributions Pj.e and Py
(examples will be shown later to demonstrate, when densities exist d Py /d Py is simply
the ratio of the densities). The modeler might have a way to estimate an upper bound
for myye := D(Prruel||Po). We shall discuss how to attempt to estimate such an upper
bound 7, in the sequel. If n, > 7., one can, as we shall explain momentarily,
systematically use 7, to find a P, such that E,h(X) > Eueh (X), where P, is the
worst-case measure associated to robustifying using the relative entropy ball around
Py with tolerance 7,.

dPtrue

D(PtrueHPO) = Birye [log

2. Moment constraints: the modeler can also choose to specify only some bounds on
moments for X. For instance, the modeler might know (or assume) that g < Eppye[X] <
7t and ¢ < Ejpe[X?] < @ for some Wy [1,0,7.

In the sequel we use Py as a generic probability model to be found and Ey is the asso-
ciated expectation. We will solve optimization problems where the variable to optimize is a
probability distribution — so these will be infinite dimensional optimization problems and Py
is precisely the variable to optimize.

Once the “uncertainty region” in the model is specified in a non-parametric way, the next
step (Step 2 in Algorithm 0) is to set up an optimization problem. We wish to solve

max Eh(X)] or min By{h(X) (2)
The max or the min depends on the meaning of being “worst-case" or “conservative esti-
mate”. For Example, the max formulation is typically the relevant one in the risk analysis
setting. As noted earlier, the optimization problem has decision variable Py, which is
unknown but is believed to lie in the feasible region 4. Corresponding to the two examples
of constraints above, A can be equal to {P; : D(P¢||FPy) < n} as a statistical discrepancy
based constraint, or {Pf : p < Ef[X] < f,0 < Ef[X?] < 7} as moment constraints. We
emphasize that there are many other ways of encoding uncertainty regions A.

Ultimately, since we do not wish to impose uncertainty regions A that induce a specific
class of parametric models — otherwise we do not allow for enough possible flexibility when
quantifying for model uncertainty — we end up with very challenging optimization problems.
So, our selection of A ends up being infinite dimensional and it is important then to have
model formulations of uncertainty quantification which are tractable.

Consequently, there are two challenges regarding : 1) Solving (technical challenge),
and 2) calibrating the necessary parameters in the constraints, e.g. 7, u, 7, 0,5 — which we
understand more as a practical challenge. B

6. SOLVING THE WORST-CASE OPTIMIZATION

6.1. KL Constraint.
We consider the worst-case optimization under KL constraint:

max F¢[h(X)] subject to D(Py||Py) <n (3)



(To avoid redundancy, we focus on the maximization problem here).
For simplicity, we shall assume here that model Py has a density fo (z), so that

Eoh (X) = /h(m) fo(x) dx.

Under this assumption, the solution to the optimization is given by the following;:
Let h* = max, h(x), and assume that

p* =Py (h(X) =h*) >0,

If —logp* < 7, then the optimal solution to is a probability model P, with density f. (x)
such that

fO T *
o) = 2 10y = 1),
where I(-) denotes the indicator function, and the optimal value is h*. In other words,
fr (@) = fo(z|h (X) = h*), is the conditional density of X given that h (X) = h*.
Now, if —logp* > 7, then the optimal solution is given by the density f. () such that
P fo(z)

where § > 0 is the root of the equation

BEo[h(X)e ]

_ Bh(X)] _

In many cases, the expressions (4 and cannot be written in closed-form. However, we
can replace the above solutions with Monte Carlo simulation estimators. It is very important
to note that the optimal solution of the optimization problem, that is, the worst-case density
f, is given fully in terms of fp, the assumed / baseline model. So, in order to obtain 5 and
P« one can actually use Monte Carlo simulation.

The procedure in which we replace the theoretical distributions by Monte Carlo samples
is shown in Algorithm which follows next.

ALGORITHM

Procedure for solving

Initialization: the baseline input density fg, and threshold level 7.

Procedure:

1. Generate m samples from fy, say they are Y7,...,Y,.

2. Let argmax{j : h(Y;)} be the set of indices in {1, ..., m} that has the maximum h(Y}).
Let |argmax{j : h(Y})}| be the cardinality, i.e. number of elements, of argmax{j : h(Yj)}.
Then

If —log W <, then

1 » .
w; = 3 TR for ¢ € argmax{j : h(Y})}
0 otherwise

If — log largmax{j:h(¥;)} n, then

Bh(Y:)
S0 Bh(Y) (7)
S eBhY)

w; =

9



for all ¢, where 8 > 0 satisfies

B, h(Y;)ehr) | |
ZZ.(egfz(m “log{ 2 e = B

3. Output

1. Interpretation: The output of the procedure is an approximation to the optimal value
of . The vector (w;)i=1,..m approximates the worst-case probability distribution
on the support (Y;)i—1, . m that achieves this optimal value. When m is large, the
procedural output becomes very close to the actual optimal value.

2. Comparison with standard procedure: The initial step involves a sampling of Y7,..., Y,
from Py. The difference is the weight put on each of these samples. In standard
procedure, the weight is 1/m for each sample. In the worst-case procedure, the weights
are computed using Step 2 in Algorithm that automatically leans towards the more
risky scenario.

3. Computational efficiency: the most involved step in our robustification algorithm is
only a one-dimensional line search for the 3, thus this procedures is easy to implement.

4. Minimization counterpart: For minimization problem, the only changes in the proce-
dures is that argmax{j : h(Y})} is replaced by argmin{j : h(Y;)} and 8 < 0 is replaced
by 8 > 0.

6.2. Moment Constraints.
We now consider the worst-case optimization under moment constraints:

max E¢[h(X)]
subject to  Efv;(X)] <ay, i=1,...,s (9)
Ef[UZ(X)] = Oy, i:8+1,...,M

where again we focus on the maximization problem here. This is a general formulation that
has M moment constraints, and v;(-) can represent any function. For instance, we can put
vi(z) = z and va(z) = —x, v3(z) = 2%, w(z) = -2 and &y = L, @ = —p, a3 = 7,
ay = —o, and all constraints are inequalities. Some of the information on the moment
constraints might come from a more detailed (bottom-up) model or from models which are
more detailed for some portions of the overall model, for instance, based on real option
valuation — see Section [R.21

The procedure for solving @ is shown in Algorithm which follows next.

ALGORITHM

Generalized linear programming procedure for solving @D

Initialization: an arbitrary probability distribution on the support {z1,...,zr}, where
L < M + 1, that lies in the feasible region in (@ Set 7= L.
Procedure: For each iteration k = 1,2, ..., given {z1,...,2z:}:

10



1. (Master problem solution) Solve

max Xy haps

subject to Y77 vi(w;)p; S @iy i=1,....8
dimvilzpj =y, i=s+1,... M
EJT':lpj =1

ijO, j=1...,7

Let {p},...,p"} be the optimal solution. Find the dual multipliers {6, «},... 7%} that
satisfy

Gk + sz\il ﬂfvi(xj) = ’Uo(.rj), if by > O,j = 1, ey T

0" + 3o whvi(eg) > woley), i p; =07 =1,....7

™ >04i=1,...,s

2. (Subproblem solution) Find 2,41 that maximizes
M
p(ﬂ?, ekv W’fu s 7”%4) = h(x) - Hk - ZW?U@(Q?)
i=1

If p(zrp1; 0%, 7k, ..., 7% ) > 0, then let 7 = 7 + 1; otherwise, stop the procedure and
P\Tr+ 1 M
x1,...,x,} are the optimal support points, with {p¥,..., pF} the associated weights.
’ ’ p pPp p ’ pl) 7p7— g
After the last iteration, output
-
k
Zh(xj)Pj
=1

1. Interpretation: The output of the procedure is an exact optimal value of @D The
worst-case probability distribution is a finite-support discrete distribution on {z1,...,2;}
with weights {p’f, . ,pﬁ obtained in the last iteration.

2. Comparison with standard and KL-constrained procedure: Unlike the previous proce-
dures, the formulation @ does not have a baseline input distribution to begin with.

3. Computational efficiency: Step 1 in each iteration of Algorithm [6.2] can be carried out
by standard linear programming solver, which can output both the optimal {p;} and
the dual multipliers {9"3 R ,77%}. Step 2 is a one-dimensional line search if X is
one-dimensional.

4. Minimization counterpart: For minimization problem, simply replace h by —h in the
whole procedure of Algorithm except in the last output 237:1 h(x; )p;C

7. CALIBRATING THE CONSTRAINTS

For KL constraint, the quantity n captures the distance between the baseline model and
the truth. When data is available, 17 can be estimated by an empirical version of the KL
divergence. There are several methods available for estimation of KL divergence. Here, we
present a direct approach based on first principles as follows. First, organize the data into a
histogram with bins say (ag, a1], (a1,a2], ..., (an—1,an], where ap and ay are the end points
of the distribution support (potentially —oo or co). The relative frequency of the data at

11



each bin is given by P(ai < X < aj+1). Moreover, calculate Py(a; < X < ajtq) for the
baseline distribution Py. Then a calibrated choice of 7 is

~

P(ai < X< ai+1)
Poa; < X < aiq1)

N-1
n=Y_ Pla; <X <a;1)log (10)
i=1

The bins can be taken to be equal length except the lowest and the highest ones.

For moment constraints, the quantities such as u, iz, 0,7 can be easily calibrated by using
the confidence intervals (Cls) for the respective moments. For instance W, t can be the 1 —«
CI for the mean of X, and ¢, can be the CI for the second moment. Note that when 2 pairs
of moment constraints are placed, Bonferroni correction needs to be made. For instance, if
one is interested in calibrating a moment set such that with 95% chance it contains the truth,
then the individual a should be taken as 0.05/2.

8. ONGOING RESEARCH: BAYESIAN FRAMEWORK AND REAL OPTIONS FOR MODEL
ENRICHMENT

8.1. Bayesian Modelling Framework.

We propose using Bayesian Hierarchical models as an alternative to current Hierarchical
modelling structure. Given the high dimensional nature of the covariates we wish to observe,
and the relatively sparse data set, Bayesian modelling provides a natural method of shrinkage
and incorporating prior beliefs into our modelling.

8.1.1. Bayesian Models.

In essence, a Bayesian model is a statistical model in which the parameters are assumed
to random variables with a distribution specified by the modeler. Once we observe data,
we are able to specify a new distribution for the parameters, conditional on the data (using
Bayes’ Theorem), called a posterior distribution.

A simple example would be the estimation of a sample mean. Say we some data,
X1, ..., Xn, and sample mean pu, with the following distributional assumptions:

The likelihood of the data given the parameter p can be written as:

P(X1, e Xplp) = WeXp(_w)
While the distribution of p can be written:
Pp) = (;ﬁ) exP(_“;)
Using Bayes’ theorem, we have:
Pl X1, s Xy) = XL Xnli) P12)

[ P(X1, .o, X |p) P(p)dps

12



Which is the posterior distribution for p that we are interested in. Omitting the calculations,
we can find that:

X; _
X1 X e N 1))

We now have a way of estimating the parameter of interest using, typically, the posterior
expectation, and a way of quantifying our uncertainty using the posterior distribution. For
further discussion on Bayesian statistics, see the discussion in Chapter 2 of [5].

8.1.2. Bayesian Hierarchical Models.

The Bayesian framework turns out to be highly flexible. We do not have to specify
particular quantities for the hyperparameters (namely, the parameters of the distribution of
the model parameters), rather, we can specify distributions for those as well. Using precisely
the same Bayesian framework, we can then find a posterior distribution for the parameters
of interest. We modify our original model, like so:

Xiyeoy X N(/Lal)
po~ N(v,1)
v ~ N(0,1

So we can write our posterior for p and vy as:

_ P(X1, .y X, ) P(uly) P(7)
T T P(X1, ey Xl ) P(ply) P(y)dpdy

Typically, calculating the integral in the denominator is very challenging, and we are
not able to come up with closed-form solutions for the posterior. For further discussion, see
Chapter 5 of [5]. However, since, we know the posterior up to a constant of proportionality
(the value of the integral), we are able to utilize Markov Chain Monte Carlo (MCMC) algo-
rithms to sample from the posterior distribution, as in [4] and [I1]. The STAN programming
language provides a very flexible and stable environment for writing Bayesian Hierarchical
models and then sampling efficiently from the posterior distribution.

8.1.3. Example Model for Mining Data.

We are currently in the process of implementing a model for the market prices of mining
companies given a set of covariates. In this framework, we can increase the number of pa-
rameters of interest to reflect certain economic realities, while more efficiently managing the
downsides of model complexity. For example, we could model Y;(t), the market capitalization
of company 7 at time ¢ as a linear combination the reserves of its holdings (multiplied by the
price of gold), broken down by country and mine type, and the value of the company’s debt.

P(M?W’Xh 7Xn)

NCountry

Yi(t) ~ N( Z (ﬁj, UndergroundUGi,j,Underground + ﬁjOpen pitOPFi; + V:Di(t))
j=1

B will consist of Noountry independent samples from a 2-dimensional normal distribution
with correlation p, and v will be Noompany samples from a normal distribution. We assume
that the mean of ~ will be 1 for economic reasons. Since we do not have much of an
understanding of the hyperparameters, we generally give them non-informative (very flat and
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wide) priors. Ultimately, we plan to select more precise hyperparameters using information
provided from a set of financial analysis reports.

B o~ Nt 1)
4~ N(0,100)

0? ~ InvGamma(.001,.001)
p ~ Unif(0,1)

v ~ N(1,03)

o5 ~ N(0,03)

8.2. Real Option Methodology.

For a given time period (with length dt), the owner of a mine (with production capacity
g per unit time, with @ total amount of mineral, and cost C(Q,t)), has the choice to operate
the mine, earning the value of the mineral extracted S less the costs, ¢(S(t) — C(Q,t)dt,
keep the mine closed, paying a maintenance cost for the facility —Mdt, or abandon the
facility altogether, incurring no future costs. At each time period, based on the amount of
mineral left in the mine, and the amount the level of mineral price, the mine owner will
make his decision in order to maximize the expected value of the future discounted cash
flows, much like an American Option. Properties that have not yet been developed can be
valued used very similar methodologies. Traditionally, this problem was formulated for the
Black-Scholes model of asset prices, namely that log-returns are normally distributed with
constant variance, and the price could be found by solving a partial differential equation in
S and Q. We proposed to use the simulation methods developed as a generalization to [9]
in [12].

Many implementations of these models (such as [§]) include a flat cost curve. We hope
to build on the costs models developed in [I0] and [3], to incorporate a random structure
to includes the well-known factors (mine technology, mine resources, resource quantile, mine
capacity), as well as environmental factors that can be included in our simulation. The user
should be able to specify a water risk regime and then value the mine under that set of en-
vironmental scenarios, or look at the average cost across all the scenarios once probabilities
have been estimated. In addition to having a stochastic cost regime, interest rates, conve-
nience yields, and so forth can be easily added with little to no extra computational effort.
Moreover, we can work with richer models of asset prices, to account for the fatter tails that
can be found in actual time series of returns.

Once all the mines of interest have been priced, their values can be placed into the
Bayesian regression framework and appropriate discount factors can be estimated for each
country (to control for external risks not accounted for in the option model).
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