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Abstract: This paper presents a statistical model to estimate the volume of released tailings (VF) and 
the maximum distance travelled by the tailings (Dmax) in the event of a tailings dam failure, based 
on physical parameters of the dams. The dataset of historical tailings dam failures is updated from 
the one used by Rico et al., (Floods from tailings dam failures, Journal of Hazardous Materials, 154 
(1) (2008) 79–87) for their regression model. It includes events out of the range of the dams 
contained in the previous dataset. A new linear regression model for the calculation of Dmax, which 
considers the potential energy associated with the released volume is proposed. A reduction in the 
uncertainty in the estimation of Dmax when large tailings dam failures are evaluated, is 
demonstrated. Since site conditions vary significantly it is important to directly consider the 
uncertainty associated with such predictions, rather than directly using these types of regression 
equations. Here, we formally quantify the uncertainty distribution for the conditional estimation of 
VF and Dmax, given tailings dam attributes, and advocate its use to better represent the tailings dam 
failure data and to characterize the risk associated with a potential failure. 
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1. Introduction 

The failure of tailings storage facilities can have disastrous consequences for nearby 
communities, the environment, and for the mining companies, who may consequently face high 
financial and reputational costs. Tailings are waste resulting from mining operations and are 
commonly deposited as slurry behind earthen or masonry dams. We refer to this form of tailing 
storage facility as TSF. In 2015, the breach of the Fundão TSF at Samarco mine in Minas Gerais 
(jointly owned by BHP Billiton Brasil and Vale S.A.) resulted in 19 fatalities, and was declared the 
worst environmental disaster in Brazil’s history. The company entered an agreement with the 
Federal Government of Brazil and other public authorities to remediate and compensate for the 
impacts over a 15 years period. Jointly, BHP and Vale recognized a US$ 2.4 billion provision for 
potential obligations under the agreement [1,2]. Twenty-one company executives were charged with 
qualified murder, and up until September 2017 the mine had not resumed operations. The 
ecosystems impacts caused by a TSF failure can last for many years depending on the nature of the 
tailings. Samarco is in the process of restoring 5000 streams, 16,000 hectares of Permanent 
Conservation Areas along the Doce River basin, and 1200 hectares in the riverbanks [3]. It is 
estimated that the livelihoods of more than 1 million people were affected because of the failure [4]. 
Improvements in the design, monitoring, management, and risk analysis of TSFs are needed to 
prevent future failures and to estimate the consequences of a breach. 
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The design of tailings dams has changed significantly from the 1930s to the present [5–7]. 
Construction of the early TSFs was done by trial and error [8]. During the 1960’s and 1970’s 
geomechanical engineering started to be used to assess the behavior of the tailings and the stability 
of the impoundments [8]. Currently, various studies are required to approve a TSF design and 
increasingly the plans for remediation and closure of the impoundments have to be included in the 
feasibility phase. Breach assessments are now part of the requirements in the permitting process of a 
new TSF or an expansion in many countries. Different parameters need to be estimated while 
conducting these assessments [9]. These include the volume of tailings (VF) that could potentially be 
released, and the distance to which the material may travel in a downstream channel, called the 
run-out distance (Dmax). Empirical regression equations for this purpose were developed by Rico et 
al. [10] using historical TSF failure data, and are commonly used to characterize such failures 
(similar empirical relationships have been developed for dams holding water [11,12], but the lack of 
tailings and differences in design and construction make them inapplicable to tailings dams). 
However, at site conditions in the mines can vary substantially and there is considerable residual 
uncertainty associated with the conditional mean value estimated by these equations. In this paper, 
we rigorously update these regression equations using an updated data set, and characterize the 
uncertainty associated with the prediction. Using the uncertainty distribution for the conditional 
estimation of VF and Dmax using TSF parameters provides a better way to interpret the TSF failure 
data and to characterize the risk associated with a potential failure. 

The calculation of VF is of particular importance for inundation analyses. Typically, TSFs are not 
totally emptied in case of failure (as opposed to water dams), and only a portion of the tailings are 
released [10]. In TSFs containing a large amount of water (supernatant pond), the breach would 
usually result in an initial flood wave followed by mobilized/liquefied tailings [9]. Therefore, the 
methods developed to estimate the released volume of water or the inundation extent from a regular 
dam (such as the water dam break-flood analyses methods in [13, 14]), do not apply to tailings dams. 
Empirical equations based on past failures, dam height, and the impounded volume of tailings, are 
commonly used to get a first estimate of the volume of tailings that could be released and the 
run-out distance. In Rico et al. [10] VF is calculated using the total impounded volume (VT) in Mm3 as 
in Equation (1) = 0.354 × .  R2 = 0.86 (1) 

and the outflow run-out distance travelled by the tailings in km (Dmax) is obtained using VF and the 
dam’s height in meters at the time of failure (H) as in Equation (2) = 1.61 × .  R2 = 0.57 (2) 

Many investigators directly use such regression equations in a deterministic way to specify 
exposure. However, at site conditions vary significantly, and there is considerable uncertainty that 
needs to be quantified. This uncertainty increases as we consider TSF volumes that are near or 
beyond the range of the data included in the regression equation. Equation (1) predicts that 
approximately a third of the tailings in the impoundment (including water) will be the outflow 
volume. This approach may result in unrealistic estimates when liquefaction is a known risk as it 
does not take into account the tailings mass rheology (viscosity and yield stress) [9]. As Rico et al. 
[10] point out, some parameters contributing to the uncertainty in the predictions include sediment 
load, fluid behavior (depending on the type of failure), topography, the presence of obstacles 
stopping the flow, and the proportion of water stored in the tailings dam (linked to meteorological 
events or not). Therefore, it is important to account for the uncertainty in these estimates to derive a 
probabilistic measure of risk that also accounts for how well the regression fits in a certain range of 
values of the predictors.  

Additional information about TSF failures since Rico et al. [10] published the above-mentioned 
equations is available. In this paper we update the original data used by Rico from 22 complete cases 
(including height, storage volume in m3, released volume in m3, and distance traveled) to 29 
complete cases with data compiled in Chambers and Bowker [15]. We compare the results of the 
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original linear regressions done by Rico et al. [10] with the results using the updated dataset. A new 
model for the calculation of Dmax is proposed introducing the predictor (Hf), which is defined as:  =  (3) 

This variable was introduced to consider that the potential energy associated with the release 
volume, may be better related to the fractional volume released as opposed to the total volume of the 
TSF.  

For each of the models we consider, and for the final model we recommend, we consider the 
uncertainty analysis of prediction. We compare the predicted intervals and observed values of VF 
and Dmax of three TSF failures across the models that were evaluated to see how well the prediction 
intervals fit the observed data. The indicated probability of exceedance of the observation as per 
each model was also assessed. 

2. Materials and Methods 

The height at time of failure (H), TSF capacity (VT), released volume (VF), and the distance 
traveled by the tailings (Dmax) are inputs in Rico’s equations (Equation (1) and Equation (2)). The data 
used in this analysis is a combination of the cases used by Rico and others compiled by Chambers 
and Bowker [15], including failures post 2008. Seven of the 29 incidents used by Rico et al. [10] do not 
have complete information or the information for volume is included in million tons, which cannot 
be used in the analysis without density data. These cases are in red letters in Table 1. It is important 
to note that the original data did not include releases as large as the ones experienced in Samarco 
and Mt Polley (cases 15 and 19 in Table 1), and this becomes relevant for future estimations of the 
potential risk of larger TSFs. The data on reported failures have variations in different sources; some 
of these variations are included as footnotes in Table 1. 

Table 1. Data in Rico et al. [10] and Chambers and Bowker (CB) [15]. Entries in red are incomplete. 

No Mine Year 
H 

(m) 
VT  

(×106 m3) 
Dmax 

(km) 
VF  

(x 106 m3) 
Failure 
Type a 

Source 

1 
(unidentified), 

Southwestern USA 
1973 43 0.5 25 0.17 SI Rico 

2 
Aitik mine, Sweden 

(Boliden Ltd.) 
2000 15 15 5.2 1.8 ER CB 

3 Arcturus (Zimbawe) 1978 25 1.7–2 Mt 0.3 0.0211 b OT Rico 
4 Bafokeng, South Africa 1974 20 13 c 45 3 SE Rico 

5 
Balka Chuficheva, 

Russia 
1981 25 27 1.3 3.5 SI CB 

6 Bellavista, Chile 1965 20 0.45 0.8 0.07 EQ Rico 

7 
Bonsal, North Carolina, 

USA 
1985 6 0.038 0.8 0.011 OT CB 

8 Cerro Negro No. (3 of 5) 1965 20 0.5 5 0.085 EQ Rico 
9 Cerro Negro No. (4 of 5) 1985 40 2 8 0.5 EQ Rico 

10 
Churchrock, New 

Mexico, United Nuclear 
1979 11 0.37 110 d 0.37 FN 

Rico/C
B 

11 
Cities Service, Fort 

Meade, Florida 
1971 15 12.34 120 9 SE Rico 
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12 
Deneen Mica Yancey 

County, North Carolina, 
USA 

1974 18 0.3 0.03 0.038 SI CB 

13 El Cobre New Dam 1965 19 0.35 12 0.35 EQ CB 

14 El Cobre Old Dam 1965 35 4.25 12 1.9 EQ Rico 

15 
Fundão-Santarem, 

Minas Gerais, Brazil 
(Samarco) 

2015 90 55 637 32 e ST CB 

16 Galena Mine (1974) 1974 9 NA 0.61 0.0038 OT Rico 

17 Gypsum Tailings Dam 
(Texas, USA) 

1966 11 7 f 0.3 0.085 SE CB 

18 Hokkaido, Japan 1968 12 0.3 0.15 0.09 EQ Rico 

19 
Imperial Metals, Mt 

Polley, British Columbia, 
Canada 

2014 40 74 7 23.6 FN CB 

20 Itabirito (Brazil) 1986 30 NA 12 0.1 ST Rico 

21 La Patagua New Dam 
(Chile) 1965 15 NA 5 0.035 EQ Rico 

22 
Los Frailes, near Seville, 

Spain (Boliden Ltd.) 
1998 27 15 41 6.8 g FN CB 

23 Los Maquis No. 3 1965 15 0.043 5 0.021 EQ Rico 

24 
Merriespruit, South 

Africa (Harmony)-No. 
4A Tailings Complex 

1994 31 7.04 4 h 0.6 h OT CB 

25 
Mochikoshi No. 1, Japan 

(1 of 2) 
1978 28 0.48 8 0.08 EQ Rico 

26 Mochikoshi No. 2 
(Japan) 

1978 19 NA 0.15 0.003 EQ Rico 

27 
Olinghouse, Nevada, 

USA 
1985 5 0.12 1.5 0.025 SE Rico 

28 
Omai Mine, No. 1, 2, 
Guyana (Cambior) 1995 44 5.25 80 4.2 ER Rico 

29 
Prestavel Mine-Stava, 

North Italy, 2, 3 (Prealpi 
Mineraria) 

1985 29.5 0.3 8 i 0.2 SI Rico 

30 Sgurigrad, Bulgaria 1996 45 1.52 6 0.22 SI Rico 
31 Stancil, Maryland, USA 1989 9 0.074 0.1 0.038 SI Rico 

32 
Taoshi, Linfen City, 

Shanxi province, China 
(Tahsan Mining Co.) 

2008 50.7 0.29 2.5 0.19 U CB 

33 Tapo Canyon (USA) 1994 24 NA 0.18 NA EQ Rico 

34 
Tyrone, New Mexico 

(Phelps Dodge) 
1980 66 2.5 8 2 SI Rico 

35 Veta de Agua (Chile) 1985 24 0.7 5 0.28 EQ Rico 
a SI = Slope instability, EQ = Earthquake, OT = Overtopping, ER = Erosion, FN = Foundation, SE = 
Seepage, U = Undefined. b CB report 0.039 × 106 m3 VF. c In Rico 13 × 106 m3 as [16] and [17]; in CB 17 × 
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106 m3. d In CB 110 km as in [18] and [17], in Rico 96.5−112.6 km. e 43 × 106 m3 in [19]. f Rico in tones. g In 
Rico 4.6 × 106 m3; in [20] 106 m3, in [21] 5.5 × 106 m3 of tailings and 1.9 × 106 m3 of acid water; in [17] 5.5 
Mm3. h In Rico 2.5 Mt VF and 2 km in Dmax as in [22]; in [5] 0.6 × 106 m3. i In Rico 4.2 km Dmax; in [13] 8 
km. 

Figure 1 shows the relationships between VF and VT, and Dmax with H × VF (called dam factor in 
[10]) using the updated dataset (plots in log scale), and Dmax with Hf, (Equation (3)). VF and VT show a 
linear relationship in the log form, while for Dmax, there is greater dispersion with the dam factor and 
Hf. 

 

Figure 1 Left: Relationship between VF and VT in ×106 m3. Center: Dmax in km in relation to the dam 
factor (H × VF). Right: Dmax in km in relation to Hf (H × (VF/VT) × VF). All plots are in the log-log scale. 
Note that the Dmax vs Hf plot is much tighter than the Dmax vs the dam factor plot. CB are added points 
from Chambers and Bowker [15] and R are from Rico [10]. 

VF was estimated in the same way as in Rico et al. [10] using the predictor VT with a log-log 
(power) transformation and the updated data. For the estimation of Dmax three models were 
considered: 
1. A model titled Dmax.1 which is similar in functional form to the one used by Rico et al. [10] 

(Dmax.1 in Table 2).  
2. A generalized linear model (glm) with the Gaussian family using a log link function (Dmax.2 in 

Table 2). 
3. A model Dmax.3 which uses the new predictor Hf.  

Table 2. Fitted models. 

Name Model 
VF.1  log(VF)~log(VT)  

Dmax.1  log(Dmax)~log(H × VF) 
Dmax.2  Dmax~log(H × VF), glm, Gaussian, log link 
Dmax.3  log(Dmax)~log(Hf)  

The observed value of VF was used to fit the Dmax regressions. 
The goodness of fit of each model was analyzed with residual plots, outlier identification, 

analysis of influential observations using Cook’s distance, and computing the root mean square 
error(RMSE) using a 5-fold cross validation (CV). The prediction intervals and probability of 
occurrence of VF and Dmax in three historical failures was compared across models using the original 
and the updated datasets. 

3. Results and Discussion 

3.1. Released Volume of Tailings 
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The presence of the new data points in the updated dataset has an effect in the uncertainty of 
VF.1 as seen in the R2, standard error and 5-fold cross validation results in Table 3. In Samarco, 58% of 
the tailings contained at the Fundão dam were released (P.15 in Table 1), whereas in the incident of 
the Gypsum tailings dam in Texas only 1.2% of the contained tailings were released (P.17 in Table 1). 
The Gypsum tailings dam incident (P.17) was not included in the updated regression (Equation (4)) 
because it was a minor release, different from the characteristics of the rest of the dataset (identified 
as an outlier with high influence, Table 3), and had a strong effect in the normality of the residuals. 

Table 3. Results for VF.1 with the original Rico dataset (O) and updated (U) datasets (including P.17). 

Data R2 p-Value 
Standard 

Error 
5-fold CV, 100 

reps 
Outliers Leverage 

Cook’s 
Distance 

O 0.87 1.209e−9 0.288 3.3  P.11, P.12 P.9 
U 0.815 1.285e−11 0.402 11.5 P.17 P.19, P.15 P.17 

The final regression equation with the updated dataset excluding P.17 is, log = −0.477 + 0.954 log  (4) 

R2 = 0.887; standard error: 0.315 
Using Rico’s notation, this may be expressed as = 0.332 × . . However, since the model 

is fit in terms of log(VF) it is important to consider the uncertainty of prediction in terms of log(VF), 
and then transform the prediction intervals to real space to determine the proper uncertainty 
intervals for VF. Tests for the residuals from the fit provided by Equation (4) indicate that a 
Gaussian distribution cannot be rejected for the residuals at the 5% level (Shapiro-Wilk test p-value 
= 0.1161). The prediction intervals are then computed at the desired significance level for log(VF) 
and then transformed to real space for VF. 

Table 4 shows the prediction of VF and 90th prediction interval for Samarco, Mt. Polley and the 
Gypsum TSF using Equation (4). These cases were selected based on the influence they have in the 
regression of VF with the updated data (Table 3). The prediction intervals are wider and the 
predicted mean is larger for Samarco and Mt. Polley when the original dataset is used. In the case of 
the Gypsum tailings dam, the observed value is not within the prediction interval in neither 
regression because the volume released was so small and the probability of exceeding it was very 
high (the same was observed even when that data point was included in the regression).  

As mentioned in the introduction, the volume of released tailings will vary greatly depending 
on the type of failure and the composition of the tailings but for a first estimate of potential damage, 
the scenarios within the prediction interval are useful to assess a range of potential consequences. 
The upper prediction interval for VF should be constrained by the total volume of tailings available 
since in all the cases presented in Table 4, the 95th percentile is more than what is physically possible 
(more than the total impounded are released). In this case, finding the probability associated with 
totally emptying the dam would be a better approach for risk estimation. We developed an online 
pp that has the capability of computing the probability of exceeding a value of VF specified by the 
user (available at https://columbiawater.shinyapps.io/ShinyappRicoRedo/). In this manner, the 
uncertainty around VF can be considered when estimating Dmax. The app also provides Q5, Q50 and 
Q75 of VF. From Table 1, P.10, P.13, P.28, and P.29 were nearly or totally emptied. 
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Table 4. Predicted and observed VF values in ×106 m3 for select cases (using all the points in the 
original Rico dataset (O) and updated (U) data sets except P.17 in U). 

Data Points 
Median 

Prediction * 
Q5 Q95 Observed 

Probability 
VF > 

Observed 

Probability 
VF > VT 

O 

Samarco 
(P.15) 

19.8 5.2 75.7 32 0.27 0.1 

Mt Polley 
(P.19) 

26.8 6.8 104.8 23.6 0.56 0.1 

Gympsum 
(P.17) 

2.42 0.71 8.2 0.09 0.99 0.07 

U 

Samarco 
(P.15) 

15.2 4.1 57.3 32 0.17 0.05 

Mt Polley 
(P.19) 

20.3 5.3 76.9 23.6 0.42 0.05 

Gypsum 
(P.17) 

2.13 0.6 7.6 0.09 0.99 0.08 

* This corresponds to the mean prediction in the log-space, which is not the mean when it is back 
transformed to the real space. For further explanation review [24]. 

3.2. Run-Out Distance (Dmax)  

The analysis of Dmax.1 (the original model by Rico et al. [10]) using the updated and original 
datasets, shows that the uncertainty increases when the new data points are introduced; R2 is 
reduced and the cross validated error increases (Table 5). The Samarco failure is an influential 
observation in all the Dmax regressions except for Dmax.3 (Table 5). The distance traveled by the tailings 
reached 637 km, although more than 90% of the tailings stayed within 120 Km of the dam, the rest 
were transported in the Doce river all the way to the Atlantic Ocean [15]. The Bonsal TSF (P.7) is also 
identified as an influential observation (Table 5), this incident had a large Dmax (close to 1 km) 
compared to the released volume of tailings (the released volume of tailings was approximately 0.01 
m3). The failure mode reported at P.7 was overtopping so it is likely that the tailings dam had a large 
proportion of water at the time of failure. P.12 also appears as an influential observation; in that case 
the distance traveled by the tailings was only 30 meters, which is small considering the dam height 
(18 m) and the released volume of tailings (0.038 Mm3). 

Based on the results from Table 5 (R2, and 5-fold CV) and the analysis of the residual plots, the 
best model found was Dmax.3, which uses the new predictor Hf and has the form: log = 0.484 + 0.545 log  (5) 

Residual standard error = 0.658. Using Rico’s notation, this may be expressed as = 3.04 ×.   

Table 5. Results of the fitted models for Dmax. 

Model Data * R2 p-Value 
5-Fold 

CV, 100 
reps 

Significant 
Outliers 

Leverage 
Cook’s 

Distance 

Dmax.1 U 0.44 5.335e−5 249.5 P.12 P.7, P.15 P.19, P.12 
Dmax.1 O 0.55 5.39e−6 54.5  P.12 P.12, P.28 
Dmax.2 U NA NA 284.9 P.11, P.15, P.19 P.15, P.7 P.15 
Dmax.3 U 0.53 4.415e−6 230.3 P.12 P.7, P.15 P.7, P.12, P.19 

* U = updated dataset, O = original dataset. 



Environments 2018, 5, 28  8 of 11 

 

Table 6 includes the results of the prediction and prediction intervals using the original model 
(Dmax.1) with the original and the updated datasets, and includes the results of Dmax.3 for three of the 
influential observations. The uncertainty distributions are obtained as before by considering the 
residuals associated with Equation (5), testing for Gaussian structure (Shapiro-Wilk test p-value = 
0.388), and then computing the prediction intervals at the desired significance levels, and 
transforming them to real space. Figure 2 has examples of the prediction intervals obtained from 
Dmax.1 O and Dmax.3 U compared to the observations. From the results in Table 6 and Figure 2 is 
evident that the additional data used to fit the regressions of Dmax dramatically reduces the 
uncertainty bounds in the prediction of large events such as Samarco and Mt. Polley, although in 
smaller Dmax events such as Bonsal, Los Frailes or Omai, the uncertainty is similar or it increases. The 
probability of exceeding the observed run-out distance shown in Table 6 was calculated 
transforming the observation to the log space, and evaluating its location in the distribution 
associated to the prediction interval (t distribution). This is exemplified in Figure 3. 

Table 6. Predicted values (in km) using all the data points for training the models (using the 
observed VF). 

Model Points 
Median 

Prediction * 
Q5 Q95 Observed 

Probability  
Dmax > Observed 

Dmax.1  
O 

Samarco (P.15) 294 19 4595 637 0.3 
Mt Polley (P.19) 141 10 2012 7 0.96 

 Bonsal (P.7) 0.25 0.02 3.25 8 0.014 
Dmax.1 

U 
Samarco (P.15) 141 6 3130 637 0.21 
Mt Polley (P.19) 74 3.6 1525 7 0.9 

 Bonsal (P.7) 0.28 0.01 6 0.8 0.23 
Dmax.3 

U 
Samarco (P.15) 174 10 2933 637 0.22 
Mt Polley (P.19) 68 4 1054 7 0.92 

 Bonsal (P.7) 0.3 0.02 5 0.8 0.28 
* This corresponds to the mean prediction in the log-space, which is not the mean when it is back 
transformed to the real space. For further explanation review [24]. 

 
Figure 2. Examples of prediction intervals from Dmax. 1 O (Rico’s original equation), Dmax.3 U and the 
observations for Dmax of past failures (obs). 

The importance of considering the uncertainty distribution around the regression of Dmax, rather 
than using the conditional mean directly is illustrated by the examples in Table 6. For the Samarco 
incident, the mean value of the predicted Dmax is 174 km using Dmax.3, while the predicted 5th (95th) 
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percentile is 10 (2933) km. The Dmax reported from the actual failure was 637 km downstream, which 
based on the uncertainty distribution associated with the regression equation, has a probability of 
exceedance of approximately 22% using model Dmax.3. In this case the tailings were deposited 
directly in the Doce River [4], transporting the tailings all the way to the Atlantic Ocean, whereas for 
other TSF failures an immediate river receptor may not be there, limiting the travel distance. 
Consequently, if just the conditional mean of the regression equations such as those developed by 
Rico et al. [10] is used, then one would be rather poorly informed as to the range of potential 
consequences of a failure.  For a probabilistic risk evaluation then, for Samarco, the concern would 
have been the greater than 600 km impact with a 22% chance rather than the modest 174 km 
indicated by the regression. It is important to highlight that the observed VF was used to fit all the 
Dmax regressions but in reality this value might not be known prior to a failure. Therefore, the 
uncertainty of the estimation of VF from Equation (4) has to also be considered in the predictions of 
Dmax, which will increase the uncertainty. This is also an issue with Rico’s approach reported in 
Equations (1) and (2), and it is acknowledged in their paper. In the online app we developed, this is 
addressed and Dmax can be calculated taking into account the uncertainty around VF in a two-step 
model.  

 
Figure 2. t distributions showing the probability of exceedance of the Samarco and Mt. Polley 
observed Dmax and the distributions obtained with model Dmax.3 around the predicted mean value of 
Dmax in the log space. 

4. Conclusions 

The empirical equations developed by Rico et al. [10] to estimate the volume of tailings released 
in a tailings dam failure and the run-out distance of the tailings were reviewed. An updated dataset 
provided information on dam failures that happened after the Rico et al. [10] paper was published 
and includes cases of dams with larger storage capacity and height than the points in the original 
dataset. The introduction of the new data points in the regression reduces the uncertainty of the 
prediction of large failure incidents such as the one occurred in Samarco. 

An improved model to estimate the run-out distance is proposed. The model uses the predictor 
Hf that considers the potential energy associated with the released volume as opposed to the whole 
tailings impoundment volume. The model proposed has a better linear fit than the original model 
when using the updated dataset. The updated model to calculate VF is presented in Equation (4), and 
the new model to estimate Dmax in Equation (5). We recommend using the app we provide which 
contains the equations (available at https://columbiawater.shinyapps.io/ShinyappRicoRedo/). Since 
we recommend using the uncertainty distribution for each “prediction” it is easiest for the user to 
use our web app. As data on other failures becomes available, it can be brought into the app and the 
model can then be automatically updated. 
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This paper emphasizes that these are empirical regression equations with significant 
uncertainty about the mean. Some investigators directly use such regression equations in a 
deterministic way to specify exposure. However, at site conditions vary significantly (rheology, 
water content, failure type, etc.), and even with the log-log regressions presented here, there is 
considerable uncertainty that needs to be quantified. It is important to account for the uncertainty in 
these estimates to derive a probabilistic measure of risk that also accounts for how well the 
regression fits in a certain range of values of the predictors.  
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