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Abstract: We demonstrate that a nonhomogeneous hidden Markov model (NHMM) can be useful for simulating future daily rainfall at
19 stations in South Florida. Using upper atmosphere circulation variables that are typically better represented than precipitation in general
circulation models (GCMs), a NHMM conditioned on GCM circulation variables is shown to provide credible stochastic simulations of daily
precipitation for future conditions. Seasonality changes as well as changes in seasonal extreme precipitation quantiles, total seasonal rainfall,
and number of wet days are assessed. The Coupled Model Intercomparison Project phase 5 simulation of the coupled ocean-atmosphere
Euro-Mediterranean Center on Climate Change Climate Model CMCC-CMS for 1948–2100 is used for the demonstration. Seasonality
changes emerge naturally from the driving variables, and each season is not modeled separately. The future projections for CMCC-CMS
indicate that South Florida may have drier conditions for most of the year. The number of wet days reduces, while extreme rainfall frequency
increases. These findings are consistent with recent rainfall trends. A modest reduction in total rainfall in the February–May period and a
slight increase in the September–October projected rainfall is noted. Changes in the expression of the North Atlantic subtropical high in the
CMCC-CMS simulations appear to influence the new seasonality and patterns of rainfall. DOI: 10.1061/(ASCE)WR.1943-5452.0001250.
© 2020 American Society of Civil Engineers.

Introduction

Climate change poses a number of problems for the management
and restoration of Everglades National Park and for the multiple
objectives for the management of the water infrastructure in South
Florida. Changes due to anthropogenic global warming in rainfall
seasonality, intermittence, and intensity, together with variations
of temperature, sea level, and hurricane occurrence, may interact
and determine the potential outcomes for surface and groundwater
flows as well as other factors such as flooding, erosion, mangrove
retreat, salinity, and ecological diversity (Orton et al. 2018; Merz
et al. 2014; Cioffi 2008; Cioffi et al. 2017). The understanding of
such phenomena could lead to the development of better tools for
water management and water supply systems (e.g., Cioffi et al.
2015; Salas et al. 2012). Existing water simulation models use
stochastic rainfall sequences indexed to existing rain gauges, and
consequently, extending such simulations to future conditions is of
pragmatic interest.

Obeysekera et al. (2011) provide a review and analysis of cli-
mate change projections for the region. In addition, many authors
relate the interannual variability in regional precipitation to the dy-
namics of the El Niño-Southern Oscillation (ENSO) (Hanson and
Maul 1991; Hagemeyer 2006; Schmidt et al. 2001; Beckage et al.

2003; Abtew and Trimble 2010; Kwon et al. 2006), Atlantic ther-
mohaline circulation (ATC) (Gray et al. 1997; Landsea et al.
1996), North Atlantic Oscillation (NAO) (Walker and Bliss 1932),
Arctic Oscillation (AO) (Thompson and Wallace 1998), Atlantic
Multidecadal Oscillation (AMO) (Enfield et al. 2001; Curtis 2008,
Miralles-Wilhelm et al. 2005; Mestas-Nuñez and Enfield 2003;
Teegavarapu et al. 2013), and Pacific Decadal Oscillation (PDO)
(Trenberth and Hurrell 1994). These phenomena modulate the
atmospheric circulation and moisture transport mechanisms world-
wide (Zhu and Newell 1998; Lavers and Villarini 2015; Conticello
et al. 2018), thus influencing regional precipitation.

Hidden Markov models (HMM) and nonhomogeneous Markov
models (NHMM) (see, e.g., Zucchini and Guttorp 1991; Hughes
and Guttorp 1994; Hughes et al. 1999; Charles et al. 1999; Bellone
et al. 2000; Charles et al. 2004; Robertson et al. 2004; Betrò et al.
2008; Cioffi et al. 2016, 2017; Robertson et al. 2003; Hughes et al.
1999; Charles et al. 1999; Hewitson and Crane 2006) have been
used successfully to model the link between precipitation and
atmospheric variables, considering the regimelike behavior of pre-
cipitation in many studies, including in South Florida. The general
structure of this approach is illustrated in Fig. 1. Kwon et al. (2009)
proposed a general methodology for the multilevel modeling of
low- and high-frequency phenomena, with wavelet autoregressive
models applied to paleoclimate proxies used to simulate decadal cli-
mate variability, as predictors for the seasonal NHMM. Khalil et al.
(2010) used NHMMs to forecast multisite seasonal precipitation
in Everglades National Park, South Florida, for the two major rainy
seasons of May-June-July (MJJ) and August-September-October
(ASO) directly using preseason ocean and atmosphere predictors.

In these past applications, the NHMM was set up separately for
each fixed season identified a priori. Here, we were interested in
21st century projections of precipitation, and part of the anthropo-
genic change of interest includes inference as to potential changes in
rainfall seasonality. The relevance of this issue has been highlighted
by a number of authors for North America, including Mallakpour
and Villarini (2017) and Jiang et al. (2016), and for Florida by
Gitau (2016), Wang et al. (2013), and Nungesser et al. (2015).
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Despite these notable contributions, how future changes in atmos-
pheric circulation and related moisture transport drive potential
changes in rainfall seasonality for Florida—locally depending on
the complex interaction between the seasonal changes of Bermuda
high strength and position (Li et al. 2011; Wang et al. 2010, 2013)
and larger scale climate phenomenon such as ENSO—is still not
clear. Consequently, in the NHMM developed in the current work,
we explored whether dynamical variables related to the atmospheric
circulation and moisture content could effectively inform changes
in the seasonality of precipitation as well as in other key statistics
of daily precipitation in South Florida, using a candidate scenario
for the Coupled Model Intercomparison Project phase 5 (CMIP5)
model.

Other approaches to map general circulation model (GCM)
precipitation to rain gauge scales exist. These include bias correc-
tion methods, e.g., bias correction spatial disaggregation (BCSD)
(Wood et al. 2004; Maurer et al. 2007), localized constructed ana-
logs (LOCA) (Pierce et al. 2014), or multivariate adaptive con-
structed analogs (MACA) (Abatzoglou and Brown 2012). However,
such methods are not seen as appropriate by some investigators
(Ehret et al. 2012) because they do not readily provide a physical
justification or address feedbacks. We do not review these methods
here, because our interest was in being able to generate transient
stochastic simulations that could better inform hydrologic scenarios
for the region, and we were interested in potential insights into
the physical mechanisms of change. Dynamic downscaling using
regional climate models that use boundary conditions from GCMs
would help provide physical insights, but would require con-
siderably more computation to produce stochastic scenarios for
water management applications. Hence, that approach was also
not considered.

“Climate Context and Data” section provides an overview of
the data used for the application to 19 stations in South Florida
where a 65-year record (1948–2012) of rainfall was available.
The NHMM methodology is described next in “Methods” section,
followed by a presentation of the model fitting in “NHMM for
South Florida” section. The predicted future rainfall patterns under
a global warming scenario (RCP8.5), using predictors from the
Euro-Mediterranean Center on Climate Change Climate Model
(CMCC-CMS) simulations from 1948–2100, are then presented
in “NHMM” section. We only consider this extreme scenario and
a single GCM because our focus is on an exploration of whether the
approach sketched in Fig. 1 can provide credible results for changes

in seasonality and rainfall statistics. Providing future scenarios for
rainfall change in Florida considering multiple scenarios and
models was not our goal. The application to other scenarios can
be mechanically done, and an approach that would optimally
combine simulations across multiple GCMs was considered be-
yond the scope of this paper. Applications to other GCMs could
of course be mechanically done. A discussion of the results con-
cludes the paper.

Climate Context and Data

The greater portion of Florida belongs to a wet subtropical climate.
South Florida has a 5-month wet season that extends from late
spring into the fall and a dry season of roughly 7 months that ex-
tends from late fall through spring. Superimposed on the main an-
nual pattern is a short dry period within the summer, and in some
years, brief periods of heavy rains occur in the middle of winter.
Two phenomena are primarily responsible for the wet season rains:
tropical storms, including hurricanes, and thunderstorms related
to convection induced by thermal breeze winds. Winter rains are
primarily associated with the passage of cold fronts, which sweep
down into South Florida in late fall, winter, and early spring.
Spring weather in South Florida is highly variable from year to year
and depends on the position and size of the Bermuda High, which
can hamper convective cloud development (Obeysekera et al.
1999).

In this study, we use a 65-year record (1948–2012) of daily rain-
fall amounts at 19 stations, whose locations are shown in Fig. 2
(for more details see also Fig. S1 and Table S1). The data were
obtained from the KNMI Climate Explorer database.

Atmospheric Fields Selected for the NHMM

For the NHMM, the following daily atmospheric fields, collected
both from reanalysis data and GCM runs, were considered as pre-
dictors: temperature (T) at 1,000 hPa, geopotential height (GPH) at
1,000 hPa, meridional winds (MW) and zonal winds (ZW) at
850 hPa, and zonal winds on the latitude of 27° N (ZW27N) from
10 to 1,000 hPa. The National Center for Environmental Prediction/
National Center for Atmospheric Research (NCEP/NCAR)
reanalysis fields (Kalnay et al. 1996) were downloaded from the
website of the IRI/LDEO Climate Data Library (n.d.).

Fig. 1. General structure of the NHMM application. The stochastic process of the underlying daily rainfall across all the rain gauges in the region
is considered to be influenced by unobserved weather regimes which conform to a Markovian process that is learned from the rainfall data.
The probability of observing each of these regimes on a given day is also conditioned on atmospheric circulation variables that are available from
reanalysis or from a future GCM projection. The correspondence of the statistics between the reanalysis and the historical GCM data over the same
period is used to assess the suitability of the GCM for projection. Split sample testing of the NHMM in the historical period is used to assess whether
trends in the rainfall statistics in the historical record are adequately reproduced using the atmospheric circulation variables.
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The 21st century projections of rainfall patterns in South Florida
were carried out using daily atmospheric fields from GCMs belong-
ing to CMIP5 (Karl et al. 2009). Initially, two potential candidate
GCMs were selected based on a literature review, namely, the
CanEMS2 (Chylek et al. 2011) and the CMCC-CMS. For each of
the NHMM predictors, we compared the basic statistics (seasonal
mean, variance, skew, variance, and serial correlation) and the spa-
tial pattern for each of the leading principal components (PCs) from
the two candidate GCMs for each atmospheric field with the cor-
responding PCs from the NCEP/NCAR reanalysis. The period of
1948–2012 was used for these comparisons. The CMCC-CMS was
selected based on this comparison. It couples the following models:
ECHAM5 for atmosphere (Roeckner et al. 2006), OPA8.2 and the
Louvain-La-Neuve sea-ice model (LIM) for ocean and sea ice
(Madec et al. 1998), with OASIS3 as the coupler (Valcke et al.
2006, 2012). We understand that we could do a similar compari-
son for each GCM belonging to CMIP5, and subsequently do a
weighted combination of GCMs based on their reliability in repro-
ducing historical atmospheric circulation patterns for the region.
However, this was not pursued in this work, because our primary
focus was on exploring whether or not the NHMM is credible
for reproducing changes in the seasonality and the key statistics
of rainfall for changing conditions for the region. The combina-
tion of GCMs or the evaluation of their relative performance for
the purpose could certainly be pursued given the success of this
demonstration.

The reanalysis data from 1948 to 2012 and the CMCC-CMS
data for 1948–2100 were downloaded. The fields of atmospheric
variables were selected over the domain bounded by 10N-60N and
120W-0W. This region covers the likely large-scale controls on the
rainfall pattern in South Florida.

For the CMCC-CMS future integration we considered only the
Representative Concentration Pathways (RCP) 8.5 scenario for
CMIP5. This is the most severe global warming scenario among
those simulated (Hayhoe et al. 2017), because this would bracket
potential changes across the other scenarios.

Methods

The HMM and NHMM models as presented by Kirshner (2005),
Khalil et al. (2010), and Robertson et al. (2004) were adapted for
the applications pursued in this paper. These models are outlined
below for completeness, and the reader is referred to the earlier
papers for details.

HMM

The HMM described in Khalil et al. (2010), Kirshner (2005),
and Robertson et al. (2004) is based on the work of Hughes and
Guttorp (1994).

Fig. 2. Occurrence and mean amounts of daily rainfall for each of the five hidden states identified by HMM (annual period from 1948 to 2012 for
19 stations in Florida region).
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Let Rt ¼ ðR1
t ;R2

t ; : : : :RM
t Þ be a vector of rainfall amounts for a

network ofM stations on day t, and let R1∶T denote a time sequence
of such vectors. This sequence of observed rainfall measurements is
assumed to be generated by a Markov chain of hidden (unobserved)
weather states St, where St takes values from 1 to K. Under a first-
order Markov assumption, the joint distribution over the hidden
state sequence can be factored as

pðS1;S2; : : : :STÞ ¼ pðS1Þ
YT
t¼2

pðStjSt−1Þ ð1Þ

where pðStjSt−1Þ is modeled as a K × K state transition probabil-
ities matrix and pðS1Þ is a set of initial state probabilities.

The rainfall Rt on day t is assumed to depend only on the hidden
state on day t. Thus

pðR1∶T ; S1∶TÞ ¼ pðS1Þ
YT
t¼2

pðStjSt−1Þ
YT
t¼1

pðRtjStÞ ð2Þ

It is further assumed that theM station components of the vector
of rainfall amounts at time t are conditionally independent of each
other given the hidden state St, i.e., spatial dependence is captured
implicitly via the hidden state variable

pðRtjStÞ ¼ pðS1Þ
YM
m¼1

pðRm
t jStÞ ð3Þ

The probability models for individual stations, pðRtjStÞ, are
specified using a delta function, corresponding to zero precipita-
tion, and a mixture gamma to model the non-zero amount distri-
bution, i.e.,

pðrtjSt ¼ iÞ ¼
YM
m¼1

aim

aim ¼

8><
>:

pim0 rmt ¼ 0

P
C−1
c¼1 pim1

ϕωimc
imc ðrmt Þωimc−1e−ϕimcrmt

ΓðωimcÞ
rmt > 0

9>=
>;

ð4Þ

where pim0 = probability of no precipitation for state i for station
m, in the conditionally independent gamma mixture model for
rainfall amounts; pim1 = complementary probability of rainfall;
and φimc and ωimc = parameters of the gamma distribution for each
component c in the mixture model. For our application a single
gamma distribution worked best in terms of the usual perfor-
mance measures for model fitting, e.g., the Bayesian information
criterion (BIC).

The parameters of the model are estimated from the observed
rainfall amount data using the expectation maximization (EM) al-
gorithm. The rainfall amounts are incorporated directly into the for-
mulation of the HMM, similar to the approach of Bellone et al.
(2000). Details of the EM estimation algorithm were presented
by Robertson et al. (2004), who considered only binary precipita-
tion occurrence instead of rainfall amounts and occurrence for each
latent state, as is done here. The EM equations required to handle
estimation of the parameters for the state-dependent amount models
are as described in Kirshner (2005).

In order to identify the most probable sequence of states
associated to observations, the Viterbi algorithm is used (Viterbi
1967), whose details are provided in Bellone et al. (2000) and
Kirshner (2005).

NHMM

NHMMs relate the hidden states identified from the local rainfall
data to regional atmospheric circulation patterns. The assumption
is that latent weather states act as a link between the large atmos-
pheric scale and the regional rainfall. (Hughes et al. 1999). Let
Xt ¼ ðX1

t ;X
2
t ; : : : :X

p
t Þ be a sequence of p exogenous atmospheric

variables at time t. Following Kirshner (2005), the NHMM is de-
fined through

pðRtjSt1;Rt−1;Xt
1Þ ¼ pðRtjStÞpðStjSt−1;XtÞ ð5Þ

where Xt
1 = sequence of atmospheric data from time 1 to t (i.e., the

length of sequence); and St1 = hidden state vector up to time t.
As a result, the statistics of daily rainfall from the NHMM pro-

cess vary over time based on the time variation of the inputs Xt.
These hidden state transitions are modeled by multinomial logistic
regression depending on Xt:

pðSt ¼ ijSt ¼ j;Xt ¼ xÞ ¼ eð∝jiþβTi xÞP
K
k¼1 e

ð∝jkþβTk xÞ
ð6Þ

where αji and βTi = parameters for the multinomial regression.
Applying the EM algorithm (Baum et al. 1970; Robertson et al.

2003), the maximum likelihood estimate of the set of parameters
for the NHMM-based application is calculated. Calibration and
simulation phases were performed by the NHMM source code writ-
ten by Kirshner, and the BIC is used for the selection of the pre-
dictors to retain.

NHMM for South Florida

Identification of Hidden States and
Spatial Dependence Structure

Seasonality can change over time under anthropogenic forcing.
Thus, one needs to actually inform these changes by the dynamics
of the circulation system that change in the GCM simulations. We
explore whether an identification of hidden states from the precipi-
tation dynamics and the associated atmospheric circulation varia-
bles helps define the changes in the seasonality of precipitation in
the region, simply by specifying future atmospheric circulation.
With this in mind, we do not assume a priori delimitation of sea-
sons, but consider the full year of data. Two possible approaches
were considered for the spatial dependence of rainfall stations.
These are the conditional independence model (HMM-CI) and the
Chow-Liu tree model (HMM-CL) (see Kirshner et al. 2004). The
first assumes that once the hidden state is known, the rainfall across
the stations is independent. If this assumption is not tenable, then
the HMM-CL provides a parsimonious approach to identify the
multivariate dependence structure. Our initial analysis of spatial
correlation across the 19 sites in South Florida, by season, indicated
only weak spatial correlations. Nevertheless, we used the BIC cri-
teria as well as cross-validation to explore the best number of hid-
den states and the corresponding spatial dependence model. Based
on these analyses, the HMM-CI representation was selected, with
five hidden states deemed as sufficient to recognize the seasonality
of rainfall as well as the dependence on the atmospheric circulation
variables.

Fig. 2 shows for each state and for each of the 19 stations the
annual occurrence probability (top) and the corresponding average
rainfall amount (bottom) obtained by applying HMM-CI. Fig. 3
shows the annual daily frequency of the hidden states, with dashed
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lines delimiting the hydrological seasons [November-December-
January (NDJ), February-March-April (FMA), May-June-July
(MJJ), and August-September-October (ASO)] of Florida. In the
following the characteristics of each of the such hidden states
are presented.

State 1 corresponds to a very dry condition that is nearly homo-
geneous for all the stations. It is dominant during the winter and
early spring, from November to April. It almost completely disap-
pears from June to August.

State 2 is not quite as dry. Its occurrence probabilities are gen-
erally very low for all the stations, but occurrence is higher for the
stations closer to the coast, and rainfall amounts are higher than for
State 1. This state persists through the entire year but with two
maxima at the beginning of May and at the end of October. From
November to April the occurrence probability is almost constant
and greater than about 20%. The minimum occurrence of State
2 appears in summer from June to September.

State 3 corresponds to very wet conditions. Both high daily pre-
cipitation amounts and high rainfall occurrence probability (more
than 50%) are homogeneous for all the stations. This state is absent
in winter, with an increase in the occurrence probability (up to
20%) at the end of May and at the end of August.

State 4 can be defined as a wet spatially nonhomogeneous con-
dition, because the rainfall occurrence probability is around 50%
for most of the stations, but the coastal stations on the west side
of the peninsula have a higher daily precipitation amount and oc-
currence probability. The state occurrence probability is maximum
(>50%) between July and August. It dominates the July-August-
September season. The occurrence probability declines to less than
10% in the winter.

State 5 represents a very wet but spatially nonhomogeneous con-
dition, where the rainfall occurrence probability and daily amount
are higher in the stations of the East Coast. Its temporal occurrence
probability is very similar to that of State 3.

The hidden state classification identified suggests that the hidden
states correspond to the different precipitation regimes that have
a distinct seasonality. Consequently, exploring large-scale atmos-
pheric predictors that can inform these mechanisms and the fre-
quency of occurrence of these hidden states has promise for the

detection of projected changes in the intensity and seasonality of
the rainfall statistics at the 19 stations analyzed.

NHMM Atmospheric Predictor Set Selection and
Characteristics of Hidden States

For candidate atmospheric predictors for NHMM, we selected a
domain of large-scale atmospheric circulation fields bounded by
latitude from 10° N to 60° N and longitude from 120° E to 0°. The
domain covers the Atlantic Ocean, a part of the Eastern Pacific
Ocean, and is large enough to represent potential regional drivers
of the local climate of the Florida region, including the strength and
position of the Bermuda High in the Atlantic and of ENSO or PDO
interactions with the Atlantic atmospheric circulation (Schmidt
et al. 2001; Enfield et al. 2001).

Candidate atmospheric predictors identified from the 1948–2012
NCEP/NCAR reanalysis data were: temperature (T) at 1,000 hPa,
geopotential height (GPH) at 1,000 hPa, meridional winds (MW)
and zonal winds (ZW) at 850 hPa, and zonal winds at the latitude
of 27° N (ZW27N) from 10 to 1,000 hPa for the 17 layers in the
vertical. The temperature implicitly carries the information associ-
ated with warming and with the associated atmospheric moisture-
holding capacity, and the pressure and wind variables included
inform the circulation dynamics associated with the moisture trans-
port into the region and the potential precipitation dynamics. Spe-
cifically, (a) the persistence and daily anomalies of GPH and T fields
at 1,000 hPa may be linked to the seasonality of circulation in the
region, including convection events and the passage of fronts; and
(b) potential cyclonic and anticyclonic flows can be identified by the
zonal and meridional wind fields at 850 hPa and (c) by the zonal
wind fields on the vertical plane (27° N and 120° E to 0°) from 10 to
1,000 hPa, which collectively represent the three-dimensional struc-
ture of the circulation.

For each candidate predictor, composite fields for each hidden
state were obtained by averaging anomalies of predictor variable
fields across all days that are associated with that hidden state based
on the Viterbi sequence identified by HMM. The physical consis-
tency (based on the expected thermodynamics of the meteorological
processes affecting moisture transport and precipitation) between
the composite fields and the expected rainfall characteristics asso-
ciated with each hidden state was assessed to select the final subset
of predictors.

The GPH fields are shown in Fig. 4. The mean field (top left)
represents a semipermanent, subtropical area of high pressure in the
North Atlantic Ocean off the East Coast of North America that mi-
grates east and west with varying central pressure. When it is dis-
placed westward, during the northern hemispheric summer and fall,
the center is located in the western North Atlantic, near Bermuda.
In the winter and early spring, it is primarily centered near the
Azores in the eastern part of the North Atlantic. State 1 occurs pri-
marily in the winter, and the associated GPH shows the correspond-
ing shift, which is consistent with expectation. The anomaly field of
State 2 (middle left plot) is weak and does not significantly alter the
mean annual field. States 3 and 5 show very similar GPH patterns,
with a dipole oriented in the northwest direction whose high and
low pressure centers are opposite to those of State 1. Although, the
high pressure center of States 3 and 5 has the same intensity and
location, the low pressure center of State 3 is closer to Florida and
significantly more intense than that of State 5. In State 4 the dipole
moves west and rotates counterclockwise with respect to those for
States 3 and 5. The intensity of high and low pressure centers is
similar to those of State 5, but less intense than for State 3.

Fig. 3. Seasonality of the daily frequency of the hidden states
(averaged over 1948–2012).
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The temperature anomaly fields (Fig. S2) are similar for States
3–5 and exhibit a nearly opposite anomaly pattern to State 1, as one
may expect from the summer/winter predominant expression of
these states. They are weak for State 2.

Zonal and meridional winds anomaly fields at 850 hPa of each
state are analyzed also (Fig. S3). States 1 and 2, associated with
winter dry conditions, are characterized by wind anomalies with
anticyclonic flow tendencies toward the Florida peninsula from
the northwest and northeast, whereas the remaining states show
the dominance of cyclonic anomalies from the south approaching
the Florida peninsula at different angles from the east or west, con-
sistent with the rainfall patterns in Fig. 2 and the GPH patterns
in Fig. 4.

Vertical patterns of zonal wind at 27° N of latitude (correspond-
ing to the mean latitude of the Florida peninsula) for each state are
analyzed (Fig. S4). State 1 (dry winter) and States 3–5 (wet
summer) are distinguished by the reversion of the sign of zonal
wind anomalies, positive for State 1 and negative for the other ones.

As before, State 2 has low anomaly values that are positive (neg-
ative) on the west (east) side.

Dimension reduction by principal component analysis (PCA)
was performed for each of the selected atmospheric variable fields.
By considering the leading PCs of these regional atmospheric fields
in the model, we expect to capture the dominant characteristics of
the circulation, its seasonal and interannual variation, and the re-
sulting effects on regional precipitation.

NHMM Calibration and Validation for Different
Predictor Sets

A number of statistical rainfall indices (shown in Table 1), rainfall
amount, number of wet days, and the 50%, 90%, 95%, and 99%
daily rainfall are compared for 1948–1982 and 1983–2012, both for
the observations at the 19 sites and for the simulations of the model
for the two periods, with the model parameters estimated using only

Fig. 4. GPH at 1,000 hPa; Reanalysis data: IRI Library -NOAA-NCAR. (Data from Kalnay et al. 1996.)
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the first period. The indices are calculated for each of the four sea-
sons, defined usually as FMA,MJJ, ASO, and NDJ, even though the
model fitting is done for the full year and is not constrained by these
season definitions. We see from Table 1 that in terms of total rainfall,
and the extremes of rainfall, these two periods are significantly dif-
ferent from each other at the 5% significance level for most seasons.
Given that these periods are shown to be statistically different in
terms of the rainfall statistics, a demonstration that the model fit
on the first period can predict the statistics for this later period would
be a good proof of concept.

A cross-validated framework was used to assess the performance
of the proposed NHMM. The model was fit for different candidate
predictor sets on the 1948–2002 data. The NHMM fit in the prior
period was then applied using the atmospheric circulation data for
the period 2003–2012. The resulting spatiotemporal statistics cover-
ing seasonality as well as rainfall quantiles and wet-day frequency
were then compared with the observed rainfall statistics, specifically
to assess whether the directional changes in these statistics relative
to the prior period were informed by the candidate NHMM.

Different combinations of leading PCs from each candidate field
were used to explore the performance of the model. We chose the
number of PCs that explains at least 80% of the variance. This led to
five GPH PCs, two T PCs, five MW PCs, five ZW PCs, and two
MW27N PCs.

After fitting each candidate model, 100 simulations are gener-
ated for 2003–2012 using the reanalysis PCs from that period as
predictors for each candidate NHMM model, and the statistics of
these are then compared to those of the observed 2003–2012 data.
The squared errors between the mean simulated statistic for each
season and the observed statistic for the season for each of the in-
dices considered are provided for each candidate model in
Table S1.

The model NHMM þ GTW fit well on both number of wet days
and seasonal rainfall (see, Figs. S5 and S6). This model also does
well in reproducing seasonality and the distribution of the 90th and
99th percentiles of daily rainfall across the 19 stations for each sea-
son (see, Fig. S7). Consequently, we conclude that the NHMM as
implemented with reanalysis-based predictors is capable of a credi-
ble out-of-sample prediction for a period whose rainfall statistics
were noted to be different from the prior period of the climate re-
cord. The application with the CMIP5 GCM is considered next.

Potential of NHMM to Project Changes in South
Florida Rainfall for the 21st Century

The leading PCs of atmospheric predictors extracted from the
CMCC-CMS simulations were used as input to NHMM. We found
that both leading PCs and spatial patterns of each field from the

reanalysis and the GCM are comparable, but the PC temporal var-
iances differ. To make the PCs from CMCC-CMS statistically con-
sistent with those for the NCEP/NCAR reanalysis, we followed the
following procedure.

The variance-corrected predictor for the 21st century PCs from
CMCC-CMS is defined as

PCM21c
jt ¼ PCM21

jt × sðPCO20
jt Þ=sðPCM20

jt Þ

where the standard deviation is sð·Þ; PCM20
jt = historical time series

of the jth predictor from the GCM; PCO20
jt = corresponding time

series for the reanalysis observations; and PCM21
jt and PCM21c

jt refer
to the GCM time series for the 21st century and its corrected
version, respectively. PCM21c

jt is then used for the 21st century
NHMM simulations.

The approach was verified for simulating rainfall with the
NHMM using, as inputs, predictors from NCEP/NCAR reanalysis
and a CMCC-CMS control run for the common period of record.
The statistics of the two series generated by the simulation are
similar for rainfall percentile and for the wet seasons, MJJ and
ASO, with some modest differences for the NDJ and FMA seasons
(Fig. S8). The statistics for the simulations generated without the
variance correction were not comparable.

For the RCP8.5 climate change scenario, simulations were car-
ried out using the CMCC-CMS-derived variance-corrected PCs
from 1948 to 2100. In Figs. 5 and 6, the 21st century bidecadal
simulation results for 2020–2040, 2040–2060, and 2080–2100
are compared with the control run simulation from 1986 to
2006. We note a progressive negative trend of number of wet days
and seasonal rainfall amount in all the seasons, except for ASO,
where we observe a modest increase in both rainfall amount and
wet days. Correspondingly, the number of dry days increases in
all the seasons, with the exception of ASO, where no significant
changes occur.

An estimate of the change in rainfall statistics is made by taking
the difference between the mean of the index in a future 20-year
period (2080–2100) and the mean of the index for 1986–2006
(Figs. S9–S12). For all seasons except ASO, we note that the prin-
cipal trends are a decrease in the number of wet days and total rain-
fall amount and an increase in the 99th percentile of daily rainfall
across the stations. Interestingly, the median daily wet-day rainfall
(not shown) does not undergo a significant change. For ASO, the
number of wet days increases, especially along the East Coast, and
the results for the other indices are mixed, with some indication of a
modest increase in total rainfall.

An illustration of the changes in the large-scale circulation from
1986–2006 to 2080–2100 is provided for selected months to under-
stand possible factors that lead to the changes in the rainfall indices.
From Fig. 7(a) bottom (showing the difference in the temperature
fields for 2080–2100 in respect to 1986–2006), note the increased
warming at the poles in March, the associated weaker equator-to-
pole temperature gradient, and the slightly weaker land-ocean tem-
perature contrast between the normally warmer Atlantic Ocean and
the North American continent that warms slightly more. The cor-
responding shift in the GPH field [see top plot of Fig. 7(a)] shows
a prominent displacement of the North Atlantic subtropical high
to the southwest and an adjustment of the polar circulation such
that there is lower pressure in the area that experiences the most
polar warming at the northeastern edge of North America, higher
pressures over Iceland, and lower pressures in the Azores and mid-
continent North America, reflecting that a meridional moisture
transport is likely shifted west of Florida, resulting in a reduction
in the number of wet days in this period. However, the warmer

Table 1. Number of stations out of 19 with a higher value of the statistic in
1983–2012 compared to the 1948–1982 period, illustrating macrolevel
trends in rainfall and its extremes. Bold face indicates an entry signif-
icantly different from what would be expected by chance at the 5% level
using a binomial test. Only in MJJ is a significant decrease indicated for
rain amount and the 99th percentile of daily rainfall

Season
Rain

amount

Wet
days
(#)

Median
rain

90th
percentile

rain

95th
percentile

rain

99th
percentile

rain

NDJ 19 12 8 13 11 18
FMA 15 11 11 13 13 8
MJJ 5 6 9 11 9 4
ASO 15 7 12 16 15 16
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temperatures likely lead to higher moisture in the atmosphere,
which, in conjunction with the frontal systems active in this time
period, lead to increased extreme precipitation. These changes are
consistent with what one expects from the potential changes in
the equator-to-pole temperature gradient and the land-ocean tem-
perature contrast (Jain et al. 1999; Karamperidou et al. 2012). In
June [Fig. 7(b)] the warming is considerably smaller than in March,
and while there is still a weakening of the equator-to-pole temper-
ature gradient, the intensification of the warming over the center
of North America and the Euro-African land mass is much more
noticeable. This translates to lower pressures over the Western
Mediterranean and the polar regions and a southwestward shift of
the North Atlantic subtropical high pressure to the Florida region,
which has the effect of steering storms away from the region. This
phenomenon is noted also by Li et al. (2011, 2012) and Gamble
et al. (2008).

Summary and Discussion

In this paper, we focused on exploring what can be learned from the
projections suggested by a single GCM as to the regional mecha-
nisms and directions of change in the seasonality and statistics of
daily rainfall. We identified atmospheric circulation fields that in-
fluence the regional precipitation and used them to build a physi-
cally informed stochastic simulation model for daily rainfall in the
region. The model builds on past related work in the region, and the

key innovation is the use of the atmospheric circulation variables
from the GCM to inform the dynamics of both the seasonality and
rainfall at the same time. The success in this demonstration sug-
gests that a more flexible approach for stochastic downscaling from
GCMs is feasible and could be applied for different scenarios and
GCMs.

Scientific consensus on climate change suggests that global
warming could induce an increase in extreme rainfall but a reduc-
tion of the frequency of subtropical rainfall. By the Clausius-
Clapeyron equation, higher temperature leads to higher water
vapor concentration in the atmospheric column. This suggests that
extreme precipitation events may increase. Mechanisms of atmos-
pheric convergence and divergence and changes in the large-scale
atmospheric circulation fields, due to persistent modifications in the
surface boundary conditions, are also important. The analyses pre-
sented indicate an increase in the magnitude of the 90th and 99th
percentile of the daily rainfall, while the median daily rainfall is
largely unchanged in the Florida projections through the end of
the 21st century. We note a continuation of the observed trend for
a decrease in the number of wet days and in the seasonal rainfall
amount for all seasons except for ASO, when there is a modest
increase. A seasonally variable change in the surface temperature
gradients and in the North Atlantic subtropical high is seen to alter
the rainfall attributes in Florida by changing the steering winds.
This is consistent with the dynamics reported in the literature and
is seen in the CMIP5 scenario for the model we selected for down-
scaling. There is a potential reduction of groundwater recharge due

Fig. 5. Comparison between the total seasonal rainfall amounts for the period 1986–2006 and for the different 20-year periods (2020–2040,
2040–2060, 2060–2080, and 2080–2100).
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to the longer dry spells and lower overall rainfall. Given this ob-
servation, without pursuing a hydrologic model that uses the daily
precipitation sequences (and other climate variables), it is not clear
whether the increase in the upper percentiles of rainfall would al-
ways translate into higher flood risk, as may be expected from the
observed trend in these statistics.

We found that the spatial patterns of the large-scale atmospheric
circulation fields were, in general, reasonable in the retrospective
simulations of the selected model, including the seasonality and the
temporal pattern of the annual cycle. However, the amplitudes of
the leading patterns were not often consistent with those from the
reanalysis model that was used to fit the NHMM. Correcting the
variance of these leading circulation modes for each predictor field
resulted in an improvement in the quality of the rainfall simulations
downscaled from the retrospective run of the GCM. This is an im-
portant diagnostic. As a matter of principle, we are not in favor of a
bias correction approach to the historical statistics of the GCM sim-
ulations to extrapolate to the future scenarios. It is not clear
whether, in the absence of an understanding of why the biases exist
between a particular GCM’s retrospective run and the correspond-
ing reanalysis run, one can make useful extrapolations into the
future. For the application here, our correction is effectively equiv-
alent to using a standardized (i.e., normalized to a mean of 0 and
standard deviation of 1) time series for the reanalysis and for the
GCM. However, the variance mismatch in the historical period
calls for an investigation of the factors that lead to the differences

between the atmospheric circulation fields in the reanalysis model
versus the GCM.

The identification of predictors and how to structure the model
are major challenges in any statistical downscaling exercise, and
while there is a formal way to pose and estimate the model, choos-
ing a set of predictors remains an art to quite an extent. In that con-
text, the work presented here can be considered one useful case
study out of many such examples. Finally, multiple model combi-
nations and different RCP scenarios should be taken into account if
the results of the study are to be presented to stakeholders as part of
a discussion of the range of uncertainty that is realistic. An exten-
sion to multiple models and scenarios is then mechanically possible
but does not add to the demonstration we explored for the CMCC-
CMS and RCP8.5. Other GCMs will most likely give different de-
tailed results, given that the model and parameter uncertainties have
been demonstrated to be significant globally and regionally. Con-
sequently, if future projections for Florida precipitation were of in-
terest, the use of only one model and one scenario is a limitation.

In addition to the significant uncertainties across GCMs with
regard to precipitation, it is likely that South Florida will experience
significant changes in vegetation and water/land percentages as
sea levels rise and the changing climate leads to vegetative changes
and also changes in human settlement. At some point such local
structural changes may be more important than the changes in pre-
cipitation. Such factors are currently not accounted for in climate
model simulations or in local response modeling. The integrated

Fig. 6. Comparison between the number of wet days for the period 1986–2006 and for the different 20-year periods (2020–2040, 2040–2060,
2060–2080, and 2080–2100).
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modeling of these processes far out in the future poses a major
challenge.

Data Availability Statement

In this study, we use daily rainfall amounts obtained from the
KNMI Climate Explorer database (https://climexp.knmi.nl). Daily
fields of atmospheric variables are obtained from both reanalysis
data and GCM runs. The NCEP/NCAR reanalysis fields (Kalnay
et al. 1996) were downloaded from the website of the International
Research Institute for Climate and Society (www.iridl.ldeo.columbia
.edu). Data from GCM runs were downloaded from the Earth
System Grid Federation–Lawrence Livermore National Laboratory
node (https://esgf-node.llnl.gov/projects/esgf-llnl/). The multivari-
ate nonhomogeneous hidden Markov model toolbox used to per-
form simulation is available at http://www.sergeykirshner.com.
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