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Abstract This paper explores the potential for seasonal prediction of hydrological variables that are 
potentially useful for reservoir operation of the Three Gorges Dam, China. The seasonal flow of the primary 
inflow season and the peak annual flow are investigated at Yichang hydrological station, a proxy for inflows 
to the Three Gorges Dam. Building on literature and diagnostic results, a prediction model is constructed 
using sea-surface temperatures and upland snow cover available one season ahead of the prediction period. 
A hierarchical Bayesian approach is used to estimate uncertainty in the parameters of the prediction model 
and to propagate these uncertainties to the predictand. The results show skill for both the seasonal flow and 
the peak annual flow. The peak annual flow model is then used to estimate a design flood (50-year flood or 
2% exceedence probability) on a year-to-year basis. The results demonstrate the inter-annual variability in 
flood risk. The predictability of both the seasonal total inflow and the peak annual flow (or a design flood 
volume) offers potential for adaptive management of the Three Gorges Dam reservoir through modification 
of the operating policy in accordance with the year-to-year changes in these variables.  
Key words  Three Gorges Dam; Yangtze River (Changjiang); seasonal flow forecast; peak flow forecast;  
reservoir operations, hierarchical Bayesian model 

Prévision d’écoulements saisonnier et maximum annuel à l’aide d’informations climatiques: 
application au Barrage des Trois Gorges dans le bassin du Fleuve Yangtze, Chine 
Résumé Cet article explore le potentiel de prévision saisonnière de variables hydrologiques qui sont 
éventuellement utiles pour la gestion du Barrage des Trois Gorges en Chine. L’écoulement saisonnier de la 
principale saison d’alimentation et le débit maximum annuel sont étudiés à la station hydrologique de 
Yichang, vus comme proxy des apports au Barrage des Trois Gorges. Sur la base de la littérature et de 
résultats de diagnostic, un modèle de prévision est construit qui fait appel aux températures de surface de la 
mer et au couvert neigeux amont disponibles pour la saison précédant la période de prévision. Une approche 
Bayésienne hiérarchique est utilisée pour estimer l’incertitude dans les paramètres du modèle de prévision et 
pour propager ces incertitudes dans les prévisions. Les résultats sont pertinents pour l’écoulement saisonnier 
et pour le débit maximum annuel. Le modèle de débit maximum annuel est alors utilisé pour estimer une 
crue de projet (crue cinquantennale ou de probabilité de dépassement de 2%) sur une base année-après-
année. Les résultats mettent en évidence la variabilité interannuelle dans le risque de crue. La prévisibilité de 
l’apport saisonnier total et du débit maximum annuel (ou du volume d’une crue de projet) rendent possible 
une gestion adaptative du Barrage des Trois Gorges via la modification des règles d’opération en accord 
avec les changements année-après-année de ces variables.  
Mots clefs Barrage des Trois Gorges; Fleuve Yangtze (Changjiang); prévision d’écoulement saisonnier;  
prévision de débit maximum; gestion de barrage; modèle Bayésien hiérarchique 
 
 
1 INTRODUCTION 
Water resources planning and management focuses on supplying a steady water supply amid 
hydrological variability. Such variability occurs at many time scales, from hourly to daily and 
from seasonal to inter-annual and beyond. Engineering and management responses to hydrological 
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variability depend on the time frame of the variability. Infrastructure, such as dams, typically 
responds to longer temporal variations. For example, a dam is typically designed to provide water 
through a season (capturing wet season flows for supply during the dry seasons) or even through a 
year or more. In this way, the storage provided by the dam mitigates seasonal and inter-annual 
hydrological variability (drought). Widespread research has demonstrated that these hydrological 
events are often manifestations of climate fluctuations, the most familiar of which is the El Niño 
Southern Oscillation (ENSO; Ropelewski & Halpert, 1986, 1987; Halpert & Ropelewski, 1992; 
Piechota & Dracup, 1996). Due to the relatively slow evolution of climate processes (consider the 
persistence of sea-surface temperatures relative to a passing weather front), where hydrological 
extremes are physically connected with climate processes, there is hope for prediction of these 
events (Hamlet & Lettenmaier, 1999; Croley, 2003; Souza & Lall, 2003).  
 Seasonal forecasts of hydrological variables potentially improve water management (Brown & 
Rogers, 2006; Brown et al., 2006). Reservoir operations, in particular, may benefit from a 
reduction in the uncertainty associated with future inflows (Kim & Palmer, 1997; Hamlet et al., 
2002; Westphal et al., 2003; Souza & Brown, 2007). For example, with an expectation of 
enhanced inflows to the reservoir during the inflow period, extra water may be released to generate 
additional benefits (e.g. hydroelectricity) in lieu of overtopping of the reservoir and spilling water. 
Alternatively, with an expectation of diminished inflows to the reservoir, releases may be curtailed 
in order to reserve water for the dry period ahead. However, in many multipurpose reservoirs, a 
flood retention volume constrains the amount of water that can be retained. A volume of empty 
space is left in the reservoir in order to capture some design flood if it should occur. Since the 
design flood may not occur (and strictly speaking, regardless of whether it occurs or not), there is 
an opportunity cost for the lost potential of that reservoir volume to store water for the season 
ahead. This opportunity cost could be potentially reduced with a skilful forecast of the flood 
volume that is likely to occur. 
 Most studies of climate influence on hydrological variables have focused on 3-month rainfall 
totals or streamflow (Souza & Lall, 2003; Trigo et al., 2005; Kwon et al., 2006). However, there is 
increasing evidence that floods are also influenced by climate teleconnections (Jain & Lall, 2000, 
2001; Franks & Kuczera, 2002; Milly et al., 2002; Pizaro & Lall, 2002; Sankarasubramanian & 
Lall, 2003). As a result, their relative probability of occurrence may be predictable. In a previous 
paper, the authors described the climate teleconnections to seasonal flows of the Yangtze 
(Changjiang) River, at a location that serves as a proxy for inflows to the Three Gorges Dam (Xu 
et al., 2007). In the present paper, we investigate the climate teleconnections to the annual flood on 
the Yangtze at this site. A prediction model for the peak annual flow is developed using a 
Bayesian hierarchical model and climate indicators. In addition, a typical design flood value is 
estimated annually based on the state of the predictors. Given forecasts of the seasonal total 
reservoir inflow and the peak annual flow (or design flood volume) occurring in that season, the 
operating policies of the Three Gorges Dam could be operated in a dynamic way, responsive to the 
prevailing climate conditions instead of the typical decision-making processes based on historical 
(stationary) assumptions of inflow and flood risk.  
 The next section of the paper describes the data and methodology used for the analysis. 
Section 3 describes climate influences on Yangtze River streamflow. Section 4 describes the 
development of the prediction models and the estimation of the inter-annual variability in design 
flood estimation. The final section discusses the results of this analysis.  
 
 
2 DATA AND METHODOLOGY 

2.1 Data 

The streamflow data for this study were recorded at the Yichang hydrological station (YHS, 
111.28°E; 30.70°N, Fig. 1). The YHS, in western Hubei, is about 1837 km from the estuary in the 
upper-middle reach of the Yangtze River basin. The streamflow records date back to 1882.  
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Fig. 1 Location of the Yichang hydrological station in the Yangtze River basin. 

 
 
Yichang is known as the “Gateway to the Three Gorges”. The well-known Three Gorges Dam 
(TGD) is about 40 km upstream. The drainage area above YHS is about 106 km2 (Lu et al., 2003; 
Xu et al., 2004, 2005). Xu et al. (2007) provide further details of the hydrological time series 
measured at YHS. While the construction and filling of the Three Gorges Dam will disrupt the 
natural flows of the Yangtze, the historical YHS data will continue to serve as a practical estimate 
of “historical inflows” into the Three Gorges Dam. 
 The annual mean flow, annual maximum flow, annual minimum flow and June-July-August 
(JJA) seasonal flow during 1882–2001 at YHS are shown in Fig. 2 (linear trend also shown). The 
mean streamflow time series shows a slightly, though not statistically significant, decreasing trend, 
consistent with the result reported by Xiong & Guo (2004). The annual hydrograph shows the 
seasonality of streamflow, with monsoon runoff (JJA) dominating (Fig. 3).  
 Because some of the climate time series data are only available from the 1970s, specifically 
the ocean precipitation data, which are available only from 1979, we divided the monthly time 
series into two parts, before and after 1979. Table 1 shows statistics for the split time series are 
similar. Streamflow values were summed for JJA during the period 1882–2001 to represent 
monsoon season streamflow. The series of annual maximum flood, the annual minimum flow and 
the annual mean flow during the period 1882–2001 (see Fig. 2) were extracted from the daily 
discharge records and used to represent the long-term hydrological characteristics at the Three 
Gorges Project site. Climate data was accessed from the International Research Institute for 
Climate and Society (IRI) Data Library (http://iridl.ldeo.columbia.edu/) and included global sea-
surface temperature (SST) and snow cover. Data sets for SST are obtained from the anomaly grid 
product of Kaplan et al. (1998), and snow data was collected from the NOAA Climate Prediction  
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Fig. 2 (a) June-July-August (JJA) seasonal flow, (b) annual maximum flow, (c) annual minimum flow, 
and (d) annual mean flow at Yichang hydrological station (1882–2001). 
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Fig. 3 Box plot of Yichang hydrological station monthly streamflow.  

(a) 

(c) 

(b) 

(d) 



Hyun-Han Kwon et al. 
 

 
 
Copyright © 2009 IAHS Press  

586 

Table 1 Statistics of the monthly streamflow data at Yichang hydrological station. 
Statistic Total time series 1882–1978 1979–2001 
Mean (104 m3/s) 1.42 1.43 1.36 
Standard deviation 1.02 1.03 1.00 
Skewness 0.85 0.82 0.97 
Minimum (104 m3/s) 0.31 0.31 0.30 
Maximum (104 m3/s) 5.22 4.95 5.22 
Range (104 m3/s) 4.91 4.64 4.92 
Coefficient of variation 0.72 0.72 0.74 
 
 
Center website (Robinson et al., 1993). The available data for SST and snow cover are from years 
1856 and 1970, respectively. The 3-month averages of March-April-May (MAM) values were 
used for prediction model development.  
 
2.2 Forecasting model using climate information 

A hierarchical Bayesian based prediction model was developed to incorporate parameter and 
model uncertainty in a statistical approach using time-dependent climate predictors. The objective 
of Bayesian inference is to compute the posterior distribution of the desired variables, in this case 
the parameters of the prediction models for seasonal mean flow and the annual maximum flood 
distribution. The posterior distribution )( xp θ  is given by the Bayes theorem, as follows: 

)|()(
)|()(
)|()(

)(
)|()()( θxpθp

θdθxpθp
θxpθp

xp
θxpθpxθp

Θ

∝==
∫

 (1) 

where θ  is the vector of parameters of the distribution to be fitted, Θ is the space parameter, p(x|θ) 
is the likelihood function, x is the vector of observations and p(θ) is the prior distribution. Here, we 
present a method for incorporating climate information into updated estimates of the parameters 
for the distribution (e.g. Normal and Gumbel) used to represent the seasonal mean flow and annual 
maximum flood.  
 A hierarchical model allows the parameter values of the probability distribution (model) to be 
themselves functions of a (regression) model based on climate indices. Thus, the first model layer 
consists of the probability distribution, with two parameters and the second layer is a predictive 
regression model for these parameters. In this Bayesian hierarchical regression the parameters are 
hypothesized to be functions of climate indicators, such as SST and snow cover that are developed 
here, and others, such as ENSO and PDO (Pacific Decadal Oscillation), that are generally 
recognized climate phenomena. Analysis of the historical distribution of the mean seasonal flow 
for JJA shows that a normal distribution cannot be rejected, according to the chi-squared 
goodness-of-fit test (not shown). Using the normal distribution, the distribution of seasonal mean 
flood Ymean(t) can be modelled as follows: 

))(),((Normal~)(mean tttY σμ  (2) 

where ~ signifies that the variable, Ymean(t) is distributed according to the distribution that follows, 
i.e. a normal distribution with mean μ(t) and standard deviation σ(t). In the present application, the 
standard deviation, σ(t), was not found to vary significantly as a function of time. As a result, 
equation (2) is changed to remove the time dependence of σ: 

)),((Normal~)(mean σμ ttY  (3) 

Then, the mean of the distribution is modelled as a linear combination of the regression parameters 
and predictors: 

)(...)()( 11 ttt kiki XX ββμ ++=  (4) 
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where Xi, climate indices, are the ith rows of the known design matrices X, and β is a vector of 
regression parameters which is normally distributed, ),(~ kβk σηNβ

k
. The parameters are fitted 

such that the posterior distribution of the parameters is maximized for the given set of observations. 
In the same manner, the probability distribution of the annual peak flow Ypeak(t) can be modelled 
by using the Gumbel type extreme distribution (Ypeak(t) ~ Gumbel(μ(t),σ)). To formally account for 
the uncertainty in the regression parameters, they are assumed to be normally distributed with 
unknown parameters 

kβη  and kσ  such that ),0.0(~
kσβ σNη . The hierarchical Bayesian structure 

also requires that we assume distributions for kσ , and 
kσσ  and in both cases we assume they 

follow a half-Cauchy distribution, which is a standard approach for non-negative variables 
(Gelman, 2006). These distributions are then sampled using the Gibbs sampler method for 
parameter estimation, as described below. 
 We follow a Bayesian approach to estimation and inference, developing an efficient data 
augmentation algorithm for posterior computation. Specifically, the maximization of the posterior 
distribution expression is required to produce the posterior distribution of each parameter and 
hyper-parameter. Here we use the Gibbs sampler which is an effective Markov Chain Monte Carlo 
method for simulating the posterior probability distribution of the data field conditional on the 
current choice of parameters (Gelman et al., 2000, 2003; Godsill et al., 2001; Tsionas, 2001; Hue 
et al., 2002; Ridgeway & Madigan, 2003; Tucker & Liu, 2003; Chen et al., 2005). The use of the 
Gibbs sampler, as discussed in the context of hierarchical Bayesian models, enables a simple 
sampling-based solution to the problem of parameter estimation (Gilks et al., 1995). It is a special 
case of the Metropolis method, for which the acceptance parameter is set equal to one (a = 1). For 
more information on the use of the Gibbs sampler for Markov Chain Monte Carlo applications, see 
Gilks et al. (1995). 
 
 
3 YANGTZE RIVER FLOW TELECONNECTION TO CLIMATE INFORMATION 

Several studies of climate influences on precipitation in East Asia provide evidence that the 
streamflow of the Yangtze River may exhibit climate teleconnections. While the relationship 
between East Asia rainfall and ENSO is inconclusive, and similarly the relationship between 
streamflow and ENSO is not significant, there are other modes of ocean temperature variability 
that do have significant influence. Previous studies have found conditions in the western Pacific 
and Indian oceans and areas in the central and eastern Pacific that are closely linked with rainfall 
in the Yangtze River basin (Chang et al., 2000; Wang et al., 2000; Yang & Lau, 2004).  
 In a previous study, Xu et al. (2007) used the spring (MAM) averages of the sea-surface 
temperatures (SSTs), outgoing longwave radiation (OLR), precipitation, snow cover and sea level 
pressure (SLP) as the predictors of monsoon (JJA) seasonal mean flow measured at the YHS, the 
same gauge as used in this study. Strong correlations were found with SSTs, OLR, PREC 
(precipitation) and SLP in primarily the western Pacific, and in the case of SST, the eastern Indian 
Ocean. Rank correlations, which are more robust for non-normal data, yielded similar results. 
 Xu et al. (2007) constructed a prediction model of JJA seasonal flow at YHS using a quadratic 
model of the SSTs and snow cover variables. The results were consistent with previous studies 
showing SSTs in the eastern Indian and western Pacific influencing rainfall and streamflow in East 
Asia (Wu et al., 2003; Yang & Lau, 2004). In the current analysis, the objective was prediction of 
the wet season streamflow. In order to assess annual peak flood predictability, the preceding 
seasonal MAM SSTs and snow cover were re-examined and used in this study. As before, global 
SSTs and snow cover were evaluated as predictors. Linear correlation maps were constructed 
using the preceding seasonal climate variables (e.g. SST and snow cover) with streamflow at YHS. 
Data from these regions were extracted and transformed into climate indices. The indices were 
formed using a spatial average over the areas of interest of the gridded time series. The spatial 
pattern of correlations with the JJA mean flow and the annual peak flow series is displayed in  
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Fig. 4 Linear correlation maps between selected climate variables averaged over MAM and YHS 
streamflow for JJA for the years 1970–2001: (a) SST vs mean JJA flow (1970–2001); (b) snow vs mean 
JJA flow (1970–2001); (c) SST vs peak flow (1970–2001); and (d) snow vs peak flow (1970–2001).  

 
 
Fig. 4(a) and (c), respectively. In both cases, anomalous conditions in SSTs are likely to strongly 
influence the flow at YHS. The area of negative correlation with SSTs located near the equator, 
which we designate SST1, is likely related to an ENSO signal. During ENSO warm events, East 
Asian monsoon circulation is weakened, causing less rainfall in northern China and leading to 
increased rainfall, streamflow and flooding in south central China as the subtropical high remains 
to the south. The area of positive SST correlation in the east Indian Ocean–western Pacific warm 
pool area, which we designate SST2, corresponds to increased rainfall (and thus streamflow) 
during non-ENSO years due to warm SSTs in that area. These correlations with the flood series are 
statistically significant. The area of positive SST correlation in the western part of the subtropical 
Pacific near the East China Sea, which we designate SST3, with the warm SST anomalies 
continuing east of Japan, relates to Tropical cyclone genesis which may play an important role in 
bringing moisture to that area. Camargo et al. (2007a,b) proposed a new probabilistic clustering 
technique, based on a regression mixture model, to describe tropical cyclone trajectories in the 
western North Pacific. These clusters are then analysed in terms of genesis location, trajectory, 
landfall, intensity, and seasonality. This study provides evidence that warm SST anomalies 
patterns in the western part of the subtropical Pacific, around 30°N, are strongly related to tropical 
cyclones clusters that make landfall in Southeast Asia and southern China.  
 In addition to summer monsoon rainfall, the snowmelt in the mountainous headwaters region 
in western China is a significant component of water flux in the Yangtze River. Although 
seemingly readily apparent, we have not seen snow cover used previously as a predictor of 
Yangtze flows. The mechanisms for peak values are heavy rains falling during the spring thaw of a 
large snow coverage area. Here we evaluate the influence of the preceding snow cover data near 
the streamflow station. The snow index is located in the high elevation headwaters of the Yangtze 
and represents potential snowmelt runoff. The relationships between snow cover and mean JJA 
flow and peak flow are displayed in Fig. 4(b) and (d), respectively. 



Seasonal and annual maximum streamflow forecasting using climate information 
 

 
 

Copyright © 2009 IAHS Press  

589

 From Fig. 4 potential predictors were identified from the SST and snow cover data sets 
according to regions of high correlation. Rectangular zones that encompassed these regions were 
specified as follows: SST (SST1: –10°N–+10°N to 150°E–180°E; SST2: –20°N–0° to 75°E–
110°E; SST3: 10°N–30°N to 130°E–150°E), and snow cover (–10°N–0° 200°E–230°E). The 
MAM values for each variable were spatially averaged over the selected box. Table 2 lists the 
correlation coefficients of the spatially averaged MAM indices with mean JJA runoff and annual 
peak flow with 95% and 90% confidence.  
 
 
Table 2 Predictors based on spatial average of selected zones from the global climate data sources and their 
correlation with each predictand. 
Climate prediction Zone selected: JJA seasonal flow Annual peak flow 
SST1 –10°N–10°N 150°E–180°E –0.27 † –0.28 † 
SST2 –20°N–0° 75°E–110°E 0.51 * 0.20 * 
SST3 10°N–30°N 130°E–150°E 0.38 * 0.45 * 
Snow –10°N–0° 200°E–230°E 0.42 * 0.42 * 
* Significant at 95% confidence. 
† Significant at 90% confidence. 
 
 
4 YANGTZE RIVER FLOW PREDICTION  
In a previous study (Xu et al., 2007), a quadratic regression model was used for the prediction of 
seasonal (JJA) streamflow. Additional exploratory data analysis confirmed that the data shows 
mildly nonlinear relationships between the YHS streamflow and some of the predictors. Conse-
quently, we explored the quadratic regression models. As described above, a hierarchical Bayesian 
prediction model is developed for seasonal mean flow and annual peak flow at YHS using selected 
climate variables, specifically SSTs and snow cover, using MAM values. The detailed prediction 
model for each case and for each year, t, can be formulated as follows: 
 

Seasonal forecasting: 
)),((Normal~)( meanmeanmean σtμtY  (5) 

)(Snow)(SST2)(SST1)(SST1)( 2
54

2
321mean ttttt mmmmm ⋅+⋅+⋅+⋅+= βββββμ  (6) 

 

Peak flow forecasting: 
)),((Gumbel~)( peakpeakpeak σtμtY  (7) 

)(Snow)(SST3)(SST1)( 2
43

2
21peak tttt pppp ββββμ +++=  (8) 

The hierarchical Bayesian regression models are solved simultaneously in a Bayesian framework. 
Non-informative priors are assumed for each of the parameters βm and βp, and their optimal values 
are selected through a maximization of the posterior likelihood associated with the quadratic 
regresion models. A Markov chain Monte Carlo (MCMC) procedure is used. In particular, the 
Gibbs sampling approach to MCMC (Gilks et al., 1995) has been used in this study. To get an idea 
for the Gibbs sampling, a simple example is provided. Suppose we want to sample s values of α 
from a joint distribution f(α,β). The Gibbs sampling begins with a value of β0 and sample α by  
ai ~ p(α|β = βi-1). Once that value of α is sampled, repeat by sampling for the next β by βi ~ p(β|α 
= ai-1). Similarly, the β parameters in equations (6) and (8) are derived through the Gibbs sampler. 
We chose to run three chains simultaneously searching for optimal parameters. The evolution of 
each chain was monitored to check for convergence to a common value. Selection of the hyper-
priors and the appropriateness of the prior distributions and the model structure were judged by the 
deviance information criterion (DIC) (Berg et al., 2004). The optimal significant predictors from a 
set of independent variables are selected by the stepwise regression method for each station. 
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Table 3 Posterior median estimates and credible intervals for selected parameters from hierarchical 
Bayesian seasonal flow prediction model at YHS. 
Description Node Mean Std dev. 2.50% Median 97.50% 
Seasonal flow model:      
Interceptor β1 2.273 0.074 2.129 2.273 2.420 
SST1 β2 –0.111 0.050 –0.209 –0.111 –0.011 
SST12 β3 0.130 0.048 0.035 0.130 0.224 
SST2 β4 0.276 0.051 0.176 0.276 0.377 
Snow2 β5 0.083 0.025 0.034 0.083 0.132 
Performance measure R CoE IoA Bias RMSE 
Seasonal (JJA) 0.802 0.643 0.886 0.001 0.231 
Peak flow model:      
Interceptor β1 4.174 0.195 3.791 4.171 4.548 
SST1 β2 0.198 0.119 –0.055 0.203 0.423 
SST12 β3 0.699 0.148 0.410 0.706 0.986 
SST2 β4 –0.089 0.079 –0.264 –0.085 0.053 
Snow2 β5 0.302 0.098 0.091 0.310 0.473 
Performance measure R CoE IoA Bias RMSE 
Seasonal (JJA) 0.729 0.531 0.828 –0.001 0.602 
 
 
 Table 3 summarizes the results from the Bayesian model. Values are estimates and statistics 
of the regression coefficients for predictors. The one parameter is β1  with the regression intercept, 
and others are the regression coefficients denoted with β2, … βJ+1, where J is the number of 
predictors. The mean, standard deviation, and 95% credible interval are based on a hierarchical 
Bayesian specification of a nonlinear regression model where streamflow is governed by the 
predictors. It is found that the coefficients for the predictor variables are statistically significant.  
 The posterior distribution for each model parameter is presented in Fig. 5. The figures repre-
sent the uncertainty distribution as derived from the hierarchical Bayesian inference relating to the 
parameter’s uncertainty for the seasonal and the annual peak prediction model. In the case of the 
seasonal flow prediction, the distribution of β3 and β4 show relatively tight uncertainty bounds 
compared to β2 and β5. An advantage of this approach is that the uncertainties of these parameters 
can be propagated to the model prediction, as can the uncertainty in the model structure itself.  
 There are several methods available to measure the goodness of fit or prediction skill for a 
particular hydrological forecasting model. Legates & McCabe (1999) have critically reviewed 
many of these principal statistics. For more details regarding goodness-of-fit measures, see 
Legates & McCabe (1999) and Willmott et al. (1985). Statistics of the seasonal flow model are 
shown in Table 3. The seasonal flow predicted by the model using SST1, SST2 and snow cover 
exhibits strong correlation with the observed streamflow, with R = 0.8 and a coefficient of 
efficiency of 0.64.  
 The best model for the peak flow as determined by the stepwise regression procedure 
consisted of a quadratic model of the variables SST1, SST3, and SNOW. Statistics of the model 
are shown in Table 3. The strongest predictors were SST3 and the snow cover variable. These 
were retained for the final model of peak annual flow at YHS. The time series of observed peak 
flow and the values predicted with the hierarchical Bayesian model with two predictors are shown 
in Fig. 6(b). The model shows reasonably good skill, with a correlation between observed and 
predicted peak annual flow of 0.73 and coefficient of efficiency of 0.53. 
 The peak annual flood model was then used to estimate the variability in a design flood 
estimation based on the state of the predictor variables. Estimates of the annual flood value with a 
2% probability of occurring in a given year (50-year flood) were produced using the Bayesian 
model based on the predictors cited above. The time series are shown in Fig. 7 with the observed 
values of annual peak flood. The time series shows considerable variability in year-to-year flood 
risk. In other words, the estimated 50-year design flood value differs based on the state of the  
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Fig. 5 Histogram of the parameters (regression coefficients) from hierarchical Bayesian regression 
model for: (a) seasonal flow model and (b) annual peak flow model. 

 
 
predictor variables which vary from year to year, and in this case are a source of predictability. 
Each time series also includes the confidence interval based on the uncertainties associated with 
the parameter estimation of Table 4. The figure also portrays the skill of the climate predictors in 
indicating the pronounced increases and decreases in flood risk inter-annually.  
 Such a prediction of the changes in design flood could be valuable from a reservoir operations 
standpoint. Since, in some years, the design flood is smaller than others, potentially less volume 
need be reserved for flood retention and could be used for additional storage to provide more water 
for the dryer months ahead. Alternatively, given an indication of enhanced flood risk based on the 
state of the predictor variables, a greater volume could be reserved for flood retention, and  
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Fig. 6 Time series of: (a) seasonal flow prediction results (solid line) and observed JJA streamflow 
(open circle); (c) peak flow prediction results (solid line) and observed annual peak flow at Yichang 
Hydrological Station using hierarchical Bayesian regression with MAM values of SST1, SST2, SST3 
and SNOW as predictors for 1970–2001. Scatter plot of (b) seasonal flow prediction model and 
(d) peak flow prediction model. 
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Fig. 7 Dynamic 50-year return period flood with SST and snow cover predictor. Solid line shows 
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Table 4 Gumbel distribution parameters and 50-year return period peak flow with stationary and non-
stationary cases. 
 Parameters 50-year return period peak flow 
 μ σ 5% Median 9.5% 
Stationary 4.46 0.86 6.88 7.79 8.98 
Modelled non-stationary 4.60 0.62 5.58 7.03 8.45 
 
 
appropriate planning could be initiated to adjust to the reduced storage available. Such predictive 
skill may be especially useful for the Yangtze, where floods have continually wreaked havoc 
throughout the basin.  
 
 
4 SUMMARY AND DISCUSSION 
This study investigated the predictability of the peak annual flood on the Yangtze River at the site 
of the Three Gorges Dam. It also demonstrated the application of hierarchical Bayesian modelling  
 

for prediction of both peak annual and mean seasonal flow. The major advantage of the approach 
is that it allows an empirical estimation of the parameter uncertainty and higher confidence in the 
uncertainty bands accompanying the prediction. The model results show satisfactory predictive 
skill, with a correlation between predicted and observed mean seasonal flow (JJA) of 0.8 and 
between predicted and observed annual peak flow of 0.73. Each model utilizes predictors that are 
available one season ahead of the prediction period.  
 The skill in the prediction of the annual peak flow may be of particular interest for dam 
operations. Often, a volume of potential storage is left empty to capture some design flood. As the 
present results show, the expected flood volume changes significantly from year to year. As a 
result, the design flood capture volume is likely too large in many years, resulting in lost potential 
benefits, and too small in other years, leading to less than expected flood risk protection. Forecasts 
could be used to modify the flood storage volume to be reflective of the risk faced in each year, 
based on observations of MAM snow cover and SSTs. Although we would not advocate a 
modification of the operating policy of the Three Gorges Dam on these results alone, we do 
advocate further investigation of the possible use of seasonal forecasting to improve the 
performance of reservoir operations there.  
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