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ABSTRACT. This chapter summarizes a body of work which has as objective the quantifi-
cation of risk exposures that are particularly important in the context of industries such
as the mining industry and which are inherently difficult to calibrate against a probabilis-
tic model due to lack of information. In order to address this problem, we propose an
approach based on game theoretic representations which are known in the operations re-
search literature as distributionally robust optimization (DRO) problems. Our goal in this
chapter is to provide a high level and conceptual discussion of this approach and explain
how we extended it and applied it to the mining setting which is the topic of this project.

1. INTRODUCTION

Concerns with climate change are now raising the question of how best to address the
exposure of companies to physical climate risk that may be experienced at their physical
assets and through their supply chain, see for example ([17]). The processes which dictate
how such risks can be assessed, disclosed and used for the valuation of the companies are
still at an evolutionary stage. A critical aspect is how to identify and price the exposure
to, for example, extreme climate events, under current or future climate.

Even where companies design infrastructure to protect against extreme climate events
such as droughts and floods, the design criteria may not be disclosed, and in a nonstation-
ary climate the actual period of record used to estimate the likelihood of extreme events
may alter the potential exposure risk. This level of detail and the re-appraisal of such
risks is unlikely to happen. Calibrating this exposure is also difficult since by definition
extreme events are rare, and their impacts may be highly location dependent. Hence,
very little data may be available for relevant exposure and model calibration.

The body of research that we summarize in this chapter proposes to address these
types of challenges and we choose the mining industry for an illustration of the ideas that
we develop. This industry has a high concentration of its valuation in a relatively small
number of assets or mines, with high potential exposure to climate risk, making it a par-
ticularly relevant sector for the initial application and insights of our theory. However,
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we believe that our methodology can be applied to a wide range of settings; any environ-
ment in which private risk, which is difficult to quantify, can have a significant impact in
valuations and exposures.

At the core of our methodology lies a game theoretic formulation. There are two players,
one is the manager who wishes to maximize the value of the company. The second one is
an adversary which is introduced to recognize that the probabilistic model which may be
assumed by the manager is not fully known.

We postulate that managers will maximize the value of their company by making ratio-
nal operational decisions, including investments and extraction policies, among others.
Managers face a stochastic environment influenced by financial and physical variables.
One such physical variable, for example, involves the occurrence of important environ-
mental shocks. While there may be enough information in the financial markets to cal-
ibrate a probabilistic model for the price fluctuation of an underlying mineral, such as
cooper or gold, there may not be enough information (due to the circumstances described
earlier) to calibrate a probabilistic model for extreme climatic events. The manager may
be forced to assume what may seem to be a reasonable probabilistic description, which,
nevertheless, is subject to model error and thus might yield a valuation error.

In order to cope with this lack of information, we introduce an adversary, which ob-
serves the manager’s decisions and perturbs the assumed probabilistic description of the
model in order to adversarily affect the overall value of the manager’s company (or mine).

The estimate of the value under our framework is therefore obtained by solving a max-
min game. The max-player corresponds to the manager and the min-player corresponds
to the adversary which is artificially introduced to recognize the lack of information dis-
cussed earlier and which perturbs a reasonable baseline model. The max-player is able to
make operational decisions to maximize the value of the mine. The min-player (i.e. the
adversary) is endowed with “features” (i.e. the shape of the perturbations allowed) and
“power” (the amount of perturbation allowed). In the end, we think of the min-player
only as a tool which systematically allows us to explore the impact in value which is
derived by the lack of knowledge of the agent who is evaluating the mine in question.

The body of research that we produce studies questions such as:
a) How to construct a reasonable adversary?
b) How to calibrate the amount of power that should be given to the adversary to avoid

overly conservative value estimates?
c) How to connect questions such as b) to well accepted statistical methodology?
d) How to efficiently solve the postulated games?
e) How to translate all of these insights into a technological tool that can aid managers

in assessing the financial impact of climatic events?
Throughout the rest of this chapter, we will elaborate on the research that we have

produced to address items a) to e), but before doing so, we will provide more details on
the merits of our approach from a decision theory standpoint. For example, we will first
address questions such as:
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I) Aren’t we being too conservative by introducing an adversary who chooses a worst-
case distribution?

II) Why not just use a Bayesian perspective, impose a parametric family of models, and
recognize the uncertainty in the model by imposing a prior on the parameters? What is
wrong with that approach?

III) Is this min-max approach supported in any set of basic axioms rooted in rational
decision making?

The rest of this chapter is organized as follows. In Section 2 we discuss our framework
from a decision theoretic standpoint and address questions such as I) to III).

In Section 3 we discuss the use of entropy as a way to describe the shape of the pertur-
bations which the artificial adversary applies, this section is intended to provide insights
into question a).

In Section 4 we discuss a method to calibrate the power given to the adversary when
using entropy to describe the shape of the perturbations and in the context of extreme
value statistics, this relates to questions b) and c).

Section 5 relates to d) and e), we explain the use of the methodology discussed in
Sections 3 and 4 applied to the particular setting of mining by means of the development
of a real options valuation tool.

In Section 6 we discuss the problems that arise when using entropy to describe the
shape of the perturbations utilized by the adversary and we also introduce a different
approach, based on optimal mass transportation, which in turn has natural economic
interpretations; this section revisits question a) and d).

In Section 7 we discuss a methodology to calibrate the amount of perturbations allowed
for the adversary when optimal mass transportation is used to describe distributional un-
certainty, this section revisits questions b) and c). In particular, we establish connections
to machine learning methodology and deep learning.

Finally, in Section 8, we present a diagram which summarizes conceptually the body
of work produced in this project and its motivations. We conclude with a discussion of
potential future research directions.

2. ECONOMIC AND STATISTICAL FOUNDATIONS OF DISTRIBUTIONALLY ROBUST

OPTIMIZATION

Our methodology is based on the celebrated work on economic robustness due to
Hansen and Sargent1. In their book on robustness, [11], Section 1.9, Hansen and Sar-
gent address the merits of a max-min formulation such as the one that we propose, and
also questions I) to III). Here we simply summarize the arguments provided by Hansen
and Sargent.

First, in connection to the use of II), we believe that such a Bayesian approach is rea-
sonable, but one may be in a position in which there is just not enough data to calibrate a

1Hansen and Sargent each won the Nobel Price in Economics in 2013 and 2011, respectively.
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reasonable prior distribution. So, the results may be too sensitive to the particular choice
of a prior distribution or model, which is precisely what the distributionally robust ap-
proach is trying to mitigate.

In settings involving scarce data, it is well known that different priors will results in sub-
stantially different inference. In turn, there may be multiple Bayesian priors that could
be used as a reasonable representation of parametric uncertainty, but resulting in signifi-
cantly different posterior distributions.

In addition, the lack of information may manifest itself in ways that are not necessarily
captured by a Bayesian specification which typically involves finitely many hyperpara-
meters on which one imposes a prior distribution. In other words, one would need to
involve a prior distribution which is supported in an infinite dimensional space and this
creates computational complications.

There is a substantial amount of theory devoted to inference in the context of multiple
priors and this is precisely the setting that leads to the max-min formulation that we
consider here.

Now, in connection to statistical decision theory, the work of Savage, [13], studied a set
of axioms based on utility theory which lead to Bayesian formulations as optimal statisti-
cal decision rules, based on expected utfility maximization problems. But some objections
have been raised with regard to Savage’s formulation and one of them appears particu-
larly relevant to our current setting. Following Gilboa and Schmeidler, [10], we discuss
an experiment from [9] in which the issue of lack of information is exposed. Consider
two urns, A and B, each containing 100 balls. Each ball is either black or white. Urn A
contains 50 black balls and 50 white balls. No additional information is available for urn
B. One ball is drawn at random from each urn and we consider the following proposi-
tions: P1) the ball drawn from urn A is black, P2) the ball drawn from urn A is white, P3)
the ball drawn from urn B is black, and P4) the ball drawn from urn B is white. Perhaps
not surprisingly, in empirical experiments, the bets are typically ranked as P1 = P2 > P3
= P4. There is no way in which a Bayesian approach, leading to a utility maximization
formulation, would support these preferences. An approach in which one considers all
possible priors and minimizes the expected utility over such priors, on the other hand,
would support precisely such ranking of preferences.

In contrast to Savage’s approach, which is the foundation of a Bayesian framework,
the approach that we take here is more related to the work of Wald, [16], game-theoretic
paradigm in which the decision maker faces an adversary leading to a max-min utility
formulation as the one that we consider in our approach.

In [10] it is shown that by altering only one of the axioms imposed in [13] one arrives to
an axiomatic foundation of the type of criterion that we use here (i.e. the one prescribed
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by Wald in [16]) and which is motivated, following [16], by a setting in which “... an
apriori distribution does not exist or it is unknown to the observer”.2

So, in summary, the approach that we follow here is also rooted in a rational decision
making theory, just as the Bayesian approach. In fact, it is fundamentally similar, but it
appears more appropriate in a setting in which many priors may be reasonable and they
may lead to significantly different inference outcomes.

Regarding question I), it is conceivable that the choice of available perturbations given
to the adversary and the size of such perturbations might result in conservative estimates.
In order to mitigate this problem we need to provide a solid foundation which justifies
the use of a “reasonable” adversary and the calibration of a “reasonable choice” of per-
turbation size.

What constitutes reasonable has to do with our perception of the phenomena which is
most difficult to model probabilistically. Most of our methodological research is directed
precisely to this problem. We shall illustrate the guiding principles that we obtained
through a range of different examples.

3. DISTRIBUTIONALLY ROBUST OPTIMIZATION AND ENTROPY

At this point, we must introduce mathematical notation to explain the concept of en-
tropy. It is useful to keep in mind the high-level explanation given in the Introduction
and contrast such a description with the mathematical formulations provided next. We
assume that P0 represents the probabilistic model assumed by the manager.

A decision made by the manager is represented by a parameter θ, which is assumed to
belong to a set of admissible decisions, Θ, that the manager is allowed to consider. Each
decision may encode a complex set of actions (e.g. the extraction policy, the decision
of when to close and re-open a mine, etc.) We are not concerned at the moment with the
problem of how to computationally obtain an optimal decision θ, we simply are interested
in conceptually explaining the approach that we study.

The manager recognizes that P0 is a plausible, but imperfect, representation of reality
and wishes to choose a decision θ which performs well over a range of possible models
P which are in some neighborhood of P0 (representing also plausible descriptions of the
reality).

So, we define such a neighborhood, called the distributional uncertainty set, via

Uδ (P0) = {P : D (P, P0) ≤ δ},

where D (P, P0) is a notion of discrepancy between P and P0 and δ > 0 is the size of
the uncertainty set. The description of D (·) dictates the types of perturbations (or shape)
that are allowed by the artificial player that we will introduce, and δ represents the size

2Gilboa and Schmeidler consider a weakening of the so-called independence action, relaxing it to the so-
called C-independence action. The C-independence assumes a certain consistency in preferences involving
any two acts and their convex combination with constant acts only (as opposed to general acts). A discussion
on the benefits of this relaxation in practice is given in Gilboa and Schmeidler (1989), p. 145.
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of such perturbations. So, both the choice of D (·) and δ are important elements in our
modeling framework.

Suppose that X represents all of the random risk factors that affect the value of a mine
in a given time horizon representing the life of the mine, which might be random itself.
Let u (X, θ) be the discounted net present value at time zero of the cash flow generated by
the mine, given that X is observed in a given time horizon, and given that the manager
has implemented a decision encoded by θ. A traditional valuation approach (using real
option pricing methodology) consists in calibrating P0 (·) and evaluating

v0 = max
θ∈Θ

E0 (u (X, θ)) .

Instead, we postulate solving a so-called distributionally robust optimization (DRO) prob-
lem, obtaining

v−δ = max
θ∈Θ

min
P∈Uδ(P0)

E0 (u (X, θ)) < v0.

This approach produces valuation estimates which are lower than traditional valu-
ation approaches because we incorporate a risk premium derived from the amount of
distributional uncertainty. If δ = 0, and mild continuity assumptions are imposed on the
discrepancy D (·), then v−δ = vδ. In Section 5 we discuss how to produce an interval for
the value; such an interval can be used to assess if the market value of an asset underes-
timates or overestimates the exposure to the type of private risk discussed earlier in the
Introduction.

Hansen and Sargent [11] advocate the use of the relative entropy (or Kullback-Leibler
divergence) as a notion of discrepancy, that is,

(1) D (P, P0) := D (P ||P0) = EP

[
log

(
dP

dP0

)]
> 0.

We do not believe that there is enough evidence which supports the use of the relative
entropy from a structural standpoint, but we discuss the main reasons for using relative
entropy.

First, we wish to use a non-parametric notion because we want to minimize as much
as possible introducing bias in valuation (that is why we are not following a Bayesian
approach). There are not many non-parametric notions of discrepancy that lead to a
tractable minimization problem for the adversary. So, one of the main reasons provided
in the literature for the use of entropy is tractability. For example, when the underlying
random factor, X , is Gaussian under P0 and u (X, θ) is a quadratic form in X , then the
worst case probability model resulting from (1) is also Gaussian and therefore the maxi-
mization problem for the manager is very similar to the one that he would solve without
introducing the min-player.

Another reason for choosing relative entropy is that it possesses a compelling invari-
ance property. In particular, the value of the minimization under the relative entropy
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unchanged under different parameterizations of the problem (see [7]). Actually this in-
variance also holds in other discrepancies (which we also consider), the key fact is the
dependence on the likelihood ratio dP/dP0.

Finally, the relative entropy concept has been studied in statistics, robust control, in-
formation theory and in economics and this is also a pragmatic reason for employing
it.

In the case of capturing discrepancy in financial valuations, the use of a discrepancy
based on the likelihood ratio (i.e. dP/dP0) is compelling because the concept of likeli-
hood ratio lies at the core of pricing theory. The fundamental theorem of asset pricing
(see [6]) asserts that there is no arbitrage (i.e. free lunch) if and only if prices can be
computed as the expected net present value according to some probability distribution
which is “equivalent” to the probability model which dictates the physical dynamics of
the underlying risk factors in the economy. The notion of equivalence is a mathematical
concept defined in the theory of probability (see [8]), two probability models P and P0

are equivalent if and only if the corresponding likelihood ratios dP/dP0 and dP0/dP are
well defined.

In order to calibrate P0 we use an approach suggested in the real options treatment from
[12]. Suppose that X = (Y, Z) and Y corresponds to market risks which can be hedged
and Z corresponds to private risks whose distribution is difficult to assess. In the case of
climate risk it seems reasonable to assume that Y and Z are stochastically independent
under P0. A reasonable approach is to calibrate the distribution of Y under P0 using risk
neutral valuation techniques and construct the specification of Z under P0 use a statistical
procedure. Then utilize the distributionally robust approach by allowing perturbations
on the risk factor Z.

4. CALIBRATING ENTROPY IN DISTRIBUTIONALLY ROBUST (DR) EXTREME VALUE

ANALYSIS

The advantages discussed for the relative entropy can be extended to more general
entropy notions, in particular, by the so-called Renyi divergence of degree α > 1, defined
via

Dα (P ||P0) =
1

α− 1
logEP0

((
dP

dP0

)α)
.

It turns out that as α ↓ 1, Dα (P ||P0) → D (P ||P0) so the Renyi divergence contains the
relative entropy as a special case.

In the mining setting, most of the private risk that affect the valuation of a mine, which
are denoted as Y in the notation introduced in Section 3, can be idealized in terms of
an environmental event (e.g. tailing dams failure due to high precipitation) which has a
very small probability (in the order of 1/1000 or smaller) of impacting a particular mine.
(There are about two significant tailing dams failures events per year around the world
and thousands of mines which are exposed.)
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In order to use the min-max approach, we revisit a classical statistical problem in-
volving the extrapolation of extreme quantiles. The problem is the following, from a
small sample, say of about 150 observations, which can be used to estimate quantiles
corresponding to probabilities not larger than, say, 1/12, one is interested in estimating
quantiles corresponding to probabilities of size 1/1000 or even smaller. Non parametric
estimation of such quantiles even in the context of independent and identically distrib-
uted (i.i.d.) observations is impossible. So, one resorts to a semi-parametric theory which
is the corner-stone of statistical extreme value analysis (EVA). Such theory postulates (i.e.
assumes) that if n data points, Z1, ..., Zn, are roughly independent and identically distrib-
uted (i.i.d), then

(2) max (Z1, ..., Zn) ≈d a (n) + b (n)M,

where ≈d means “approximately equal in distribution”. The key insight is that a (n) and
b (n) are deterministic quantities, so the n sources of randomness which are present on the
left hand side of (2), can be summarized in a single source of randomness, represented by
the random variable M .

Under assumption (2) and also assuming that the Zi’s are i.i.d. then it can be shown that
M follows a generalized extreme value distribution with some parameter γ ∈ (−∞,∞).
The parameter γ has a qualitative interpretation which is both intuitive and important
from a modeling standpoint.

Because one can directly derive approximation (2) for many examples known in practice
(e.g. Beta distributions, Exponential, Gaussian, Pareto, etc.) we are able to gain intuition
about the meaning of γ. In particular, γ < 0 is obtained for super-light tailed observa-
tions, that is, observations with bounded support; γ = 0 is obtained when considering
light-tailed observations (i.e. observations with infinite support, but with exponential-
type decay, like Exponentials and Gaussians), and γ > 0 is associated to heavy-tailed
observations (i.e. observations with a polynomially decaying density, such as the Pareto
distribution). If γ < 0, then Zi is said to belong the the “domain of attraction” of a Weibull
distribution

It is important to recognize in mind that (2) is assumed. The mathematical result charac-
terizes M under assumptions which are impossible to verify (e.g. the data may not even
be stationary) or may not hold even in simple examples. For instance, in [2], we show
provide several examples in which the use of EVA would underestimate risk exposure to
extremes.

It is also important to keep in mind that, in the end, we wish to extrapolate the behavior
from “typical” observations far out into the tail information (which is unavailable). In the
absence of a physical mechanism which informs such an extrapolation, a statistical ap-
proach based on a linear-type regression as in (2) is reasonable because it is parsimonious
and therefore easy to calibrate.

So, our point of view is that a reasonable model, P0, might be constructed from the
assumptions that support the standard application of statistical EVA. But then, in [2], we
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use a distributionally robust (DR) approach to correct from the fact that the assumptions
behind (2) might not hold.

The point in DRO is choosing a reasonable distributional uncertainty set Uδ (P0) and the
size of the uncertainty δ. At the very least, the choice should preserve some coarse knowl-
edge that the modeler typically possess about the uncertainty (e.g. are we facing a heavy
tails vs light tails phenomena). Since the modeler (i.e. the statistician or the manager who
is interested in the estimation problem) chooses P0 using standard EVA, then the intuition
involving the type of tail phenomena and its connection to the parameter γ ∈ (−∞,∞)

should typically be preserved, even after introducing a distributionally robust correction.
That is, unless the modeler has little confidence on the type of tail behavior that he is
facing, in such case it is necessary to choose a more powerful adversary that quantifies
the potential of qualitatively higher-than-expected extremes (relative to standard EVA).

The paper [2] shows that choosing Dα (P ||P0) to define Uδ (P0) preserves the domain of
attraction of the resulting worst case distribution. That is, defining

F̄α,δ (x) = max
P :Dα(P ||P0)≤δ

P0 (M ≥ x)

for α > 1 results in a distribution that preserves the same domain of attraction as that of
M under P0. Moreover, if α = 1, and the support of the underlying data is unbounded,
the domain of attraction becomes qualitatively different, in particular much heavier tails
are induced. This results provides a structural reason for choosing the Renyi divergence
with α > 1 and only select the relative entropy if one wishes to be “extra careful” because
we are not even sure of the type of tail phenomena that we are facing, even qualitatively.

Next, in [2] we propose a data-driven approach which can be used to “automatically”
select both α and δ for extrapolation in a setting which might be somewhat close to the
standard EVA case (but we still are able to provide valid upper bounds in the context of
inhomogeneous data). The idea is the following. If Pn represents empirically the data,
Dα (Pn||P0) can be estimated, together with a and upper confidence level (for instance
using Bootstrap). This (i.e. the upper confidence level obtain with say 95% confidence)
results in a value δn,α. Note that this estimation is relatively insensitive to lack of infor-
mation on the tails of the distribution. The value of α is then chosen to obtain the smallest
upper bound for the quantites that can be well estimated using a non-parametric proce-
dure (such as Bootstrap).

This approach is then shown in [2] using simple examples that the DR correction allevi-
ates problems with underestimation of extreme quantiles in traditional statistical EVA.

5. APPLICATION OF DRO AND REAL OPTIONS IN MINING OPERATIONS

We now go back to the problem of mining valuation with probabilistic mispecification
in private risks. The methodology summarized in this section is documented in [5].

The starting point is to use a real options valuation methodology which assumes that
some probabilistic model, P0, has been calibrated and the value of the mine is obtained
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via

vδ = max
θ∈Θ

E0 (u (Y, Z, θ)) ,

where the maximization is solved using a numerical technique for optimal stochastic con-
trol detailed in [5], in this case θ includes decisions such as opening and closing the mine
at each point in time, and the rate of extraction of the underlying mineral. We do not
discuss in this summary the advantages of using real options instead of discounted net
present value. This debate has actually little to do with our contributions. Any valua-
tion methodology that takes advantage of probabilistic modeling is subject to the type of
model error that arises due to lack of data and which is precisely what we are trying to
quantify.

The risk factorX = (Y,Z) is split into two components, market risk (Y ) and private risk
(Z), which are assumed to be independent. The contribution of Z, which corresponds
to financial risks, is calibrated under P0 using market information (such as options, for
instance, in the case of the underlying mineral - e.g. gold) and we do not apply distribu-
tional uncertainty over Z.

The contribution of the private risk is modeled according to a Poisson process with
intensity λ under P0, where the intensity is expressed in annual basis and it is interpreted
as the probability of a substantial disaster with devastating consequences for the mine.
We assume that λ = .01 (i.e. the chance of a catastrophic event is about 1/100).

Next, we provide a mechanism to robustify the value of the mine using our distribu-
tionally robust extreme value theory as we explain next.

We assume that the mine in question builds a tailing dam which is tall and strong
enough to withstand extreme precipitation events for over 100 yrs. We then consider the
historical precipitation recorded in the geographical region where the mine is located. We
use standard EVA to compute the quantile xp such that the maximum precipitation over
100 yrs is guaranteed to be less than xp with 95% confidence. Then, we apply our DR
extreme value analysis described in Section 4, thereby obtaining a DR tail distribution
F̄α,δ (·). Then we let λ̄ = F̄α,δ (xp) and we evaluate

v−δ = max
θ∈Θ

Ē0 (u (Y, Z, θ)) ,

where the probability model P̄0 retains the same distribution of Y calibrated from market
specifications to obtain P0, but Z is now a Poisson process with intensity λ̄, and both Y

and Z remain independent.
This valuation procedure is equivalent to a pricing procedure of the form

v−δ = max
θ∈Θ

min
Uδ(P0)

Ē0 (u (Y,Z, θ)) ,

where the robustification is only applied to Z.
In [5] there is another approach which is used to calibrate δ, using the relative entropy

as the underlying discrepancy criterion. Such an approach depends on the existence of a
basket of mines which are assumed to be well valued by a group of analysts. This basket
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is used to calibrate the value of δ, given the specification of a baseline model, P0. In
simple words, we obtain the value of every mine in the basket applying the real options
pricing methodology given model P0, then we robustify changing δ in order to match the
valuation provided by the analyst. This is repeated for every company in the basket, thus
generating a set of δ’s. We can then sort these values of δ and select the 95% quantile, for
example. Such value would provide a choice of δ which is informed by expert opinion.

The paper [5] applies this methodology using a group of mines, showing reasonable
empirical performance.

6. THE PROBLEM WITH ENTROPY: OPTIMAL TRANSPORT AS A NOTION OF MODEL

UNCERTAINTY

The problem with using entropy-type notions to describe the uncertainty set Uδ (P0)

arises in the context of risk quantification, as opposed to valuation. In the context of valu-
ation, the use of relative entropy can be motivated by invoking the fundamental theorem
of asset pricing, which in particular implies that, to avoid arbitrage, the likelihood ratio
between the physical model and the risk neutral model must be well defined. This nec-
essary condition is very weak, but it at least motivates using relative entropy as a notion
of discrepancy. In particular, if P0 is chosen to satisfy such a weak necessary condition,
then the correct risk neutral specification will eventually make it into the uncertainty set
by choosing δ sufficiently large.

The use of entropy-type notions for the evaluation of model error impact in risk quan-
tification cannot be motivated from the standpoint of the existence of a likelihood ratio.
Risk quantification is performed using the physical probability model, so this type of
calculation is more statistical in nature. From the standpoint of risk analysis one might
specify a probabilistic description based, for example, on purely empirical data (i.e. fully
non-parametric).3

In fact, this type of approach is often used in the estimation of Value-at-Risk using
historical simulation. Clearly, an empirical distribution (which is supported in finitely
many points) is not equivalent (in the mathematical sense described earlier) to a true
underlying distribution which is continuous.

So, given that risk quantification is more of a statistical estimation problem (as opposed
to a calibration problem, which is the case in valuation), familiar notions such as over-
fitting and out-of-sample performance are important to keep in mind. If P0 corresponds
to the empirical distribution induced by, say, n observations, then D (P ||P0) ≤ δ < ∞
implies that P must be supported on those n samples. Therefore, if we insist in using
entropy notions to quantify discrepancy, the max-min approach that we advocate would

3Actually, even in the context of valuation, the fundamental theorem of asset pricing, becomes more
technical in the case of an economy with uncountably many possible random outcomes. In that case, there
are many reasonable ways in which one might interprete an arbitrage free market and these interpretations
might lead to risk neutral models which are not necessarily equivalent to the underlying physical model.
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not induce strong out-of-sample performance of the risk estimates (because every pertur-
bation allowed must remain the sample intact, just the weights associated to each data
point are allowed to be changed by the adversary in our game formulation).

In order to cope with this problem, we consider a different notion of discrepancy called
“optimal transport” discrepancy. The optimal transport discrepancy between two prob-
ability models, P and P0, depends on a cost function c (·) (to be discussed momentarily)
and it is denoted by Dc (P, P0). The cost function is evaluated at a pair (x, y), c (x, y),
represents the cost of transporting a unit of mass from position x to position y. For ex-
ample, one might consider, c (x, y) = ‖x− y‖, the Euclidean distance between x and y. In
general, it is only assumed that c (x, x) = 0, that c (x, y) ≥ 0 and that c (·) is continuous
(although this condition can be relaxed).

In simple words, Dc (P, P0) is the minimum cost of transporting the mass described
by the histogram represented by P into the histogram represented by P0. So, for exam-
ple, if

∑m
i=1 P (xi) = 1 and

∑n
j=1 P0 (yi) = 1 for sets of points {x1, ..., xm} ⊂ Rd and

{y1, ..., yn} ⊂ Rd then Dc (P, P0) is computed by solving the linear program,

Dc (P, P0) = min
∑
i,j

πi,jc (xi, yj)

s.t.
∑
j

πi,j = P (xi) for all i = 1, ...,m

∑
i

πi,j = P0 (yj) for all j = 1, ..., n

πi,j ≥ 0 for all i, j.

The optimal solution, say
{
π∗i,j : 1 ≤ i ≤ m, 1 ≤ j ≤ n

}
represents a joint distribution

which in particular has as its marginales P and P0, respectively. The optimal solution
to the previous linear program always exists because the feasible region is compact and
non-empty (note that πi,j = P (xi)P0 (yj) is feasible).

The definition is completely analogous for arbitrary distribution functions P and P0

(even distributions describing random elements infinite dimensions, such as random
functions like Brownian motion). In the general case, the summations become integrals,
but the resulting linear program has infinitely many variables and, therefore, the asso-
ciated duality theory is much more complicated than in the standard finite dimensional
linear programming. But this theory is well understood in the literature on optimal mass
transportation, as explained in [3].

In order to gain intuition for the use of optimal transport costs, Figure 1 idealizes the
optimal transport discrepancy between two densities depicted by the curves µ and v.
Density µ represents a pile of sand, normalized to contain a total mass equal to one (say
1 ton), and v represents a sinkhole, which can be completely covered by a 1 ton of sand.

If the solution to the optimization problem defining Dc (µ, v) is a joint distribution
π∗ such that π∗ (y|X = x) (with X following distribution µ and Y following distribution
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FIGURE 1. Idealization of optimal transport and an optimal mass trans-
portation strategy.

v) is concentrated at a single point, we may write y = T (x) (the mapping T (·) is im-
plicitly given by the conditional distribution π∗ (y|X = x)). In such case, the cheapest
way to transport the mass described by the mountain µ to cover the sinkhole profiled
by v is to move all the mass in x to position y = T (x), and the total transportation cost∫
µ (x) c (x, T (x)) dx is therefore minimized.
As mentioned in Section 3, one of the main reasons for choosing relative entropy as

tool for describing distributionally robust uncertainty sets is tractability. So, to enable the
use of optimal transport in defining distributional uncertainty sets, we need to provide a
tractable way for computing quantities such as

(3) sup
P :D(P,P0)≤δ

EP [f (X)] .

The paper [3] provides a complete duality theory for the evaluation of quantities such
as (3). In particular, it is shown in (3) that under mild conditions on f (·) (in particular if
f (·) is continuous and EP0 |f (X)| <∞, then

sup
P :D(P,P0)≤δ

EP [f (X)] = inf
λ≥0

(λδ + EP0 [sup
y
{f (y)− λc (X, y)}]).

For example, if f (X) = I (X ∈ A), so that P (X ∈ A), and cA (x) = inf{C (x, y) : y ∈ A}
then

sup
P :D(P,P0)≤δ

EP [f (X)] = P0 (cA (X) ≤ 1/λδ) ,

where λδ > 0 is a Lagrange multiplying and if cA (X) has a continuous distribution and
EP0 (cA (X)) > δ, then λδ is the unique solution to

EP0 [cA (X) I (cA (X) ≤ 1/λδ)] = δ.

This result is applied to various stylized risk evaluation settings in [3].
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In summary, paper [3] provides a fundamental theory for the systematic use of optimal transport
discrepancies as a tool for distributionally robust optimization beyond the use of entropy discrep-
ancies.

7. CALIBRATING OPTIMAL TRANSPORT IN STATISTICAL PROBLEMS

The goal of the paper [1] is to develop the statistical theory required to use optimal
transport and DRO for statistical estimation (and, therefore, for risk estimation). For ex-
ample, how to select δ in the definition of the uncertainty set Uδ (P0) from a statistical
standpoint?

The paper also explains why DRO is actually a desirable approach by connecting it to
well established and successful statistical procedures. In particular, we revisit standard
statistical problems, such as linear regression and generalized linear models. For exam-
ple, consider the estimation of a linear regression parameter, β∗, in a linear regression
model of the form

Yi = βT∗ Xi + εi,

where the Yis are responses,Xis are predictors and εis are errors. The standard estimation
approach consists in minimizing the mean squared errors,

min
β
E

1/2
Pn

[(
Y − βTX

)2]
= min

β

(
n−1

n∑
i=1

(
Yi − βTX

)2)1/2

,

the notation EPn represents averages with respect to the empirical data (as shown in the
right hand side of the previous display). In [1] we showed that if

(4) c
(
(x, y) ,

(
x′, y′

))
=

{
‖x− x′‖q if y = y′

∞ if y 6= y′
,

with ‖x‖q =
(∑d

i=1 x
q
i

)1/q
for a vector x = (x1, ..., xd) and q ≥ 1, then

(5) min
β

max
P :Dc(P,Pn)≤δ

E
1/2
Pn

[(
Y − βTX

)2]
= min

β

[
E

1/2
Pn

[(
Y − βTX

)2]
+
√
δ ‖β‖p

]
.

This is result is quite significant because of three main reasons.
First, the right hand side is a celebrated statistical estimation procedure called sqrt-

Lasso. In addition, analogous representations for many other machine learning estima-
tors (such as regularized logistic regression and support vector machines) are also ob-
tained in [1]. So, we are able to show that many successful estimators are just a particular
case of the DRO framework using optimal transport as we propose. In addition, our rep-
resentation provides insight on the interpretation of traditional regularization. For exam-
ple, (5) shows that the use of direct regularization in the parameter β, as it is traditionally
applied, amounts to assuming that there is no distributional uncertainty in the response
variable. This is precisely the interpretation of an infinite cost associated to perturbing
the responses as prescribed in the definition of c (·) in 4. It is important to emphasize
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that representation (5) is the first exact representation of machine learning estimators us-
ing DRO. Our paper is among the very first that studies these types of representations, a
discussion of the literature is given in [1].

We note that the definition of c (·) in 4 is given just to recover the form of sqrt-Lasso. We
do not necessarily advocate such a choice, although it may seem reasonable in cases in
which distributional uncertainty in the response are assumed to be the result exclusively
of uncertainty in predictors. If this is the case it makes perfect sense to use 4, but this is
rarely discussed in standard applications of regularized estimators.

Second, the penalty term of the form
√
δ ‖β‖p, which appears in the representations that

we derive explains, from a distributionally robust perspective, the role of regularization
in machine learning. Regularization is a technique that is often used to recognize that a
complex model will tend to overfit the data, so penalizing “the complexity” of a model
using the norm of the parameter is a sensible approach to reduce overfitting. In contrast,
the game-theoretic representation that we obtain shows that regularization arises as the
result of recognizing that the statistician is selecting an estimator which is intended to
perform well for models which are a perturbation of the empirical data. This novel view
leads to a natural and data-driven way for choosing the regularization parameter, namely√
δ. This leads to the third reason which advocated for the significance of our approach,

namely, optimally choosing δ.
The regularization parameter in machine learning estimators (i.e. the coefficient which

multiplies the penalty term ‖β‖p) is typically chosen using cross validation. Basically,
cross validation consists in splitting the data in training and testing sets, and the para-
meter δ is chosen to maximize the performance on the testing set. Cross validation is a
time-consuming estimation strategy and, strictly speaking, if one wishes to avoid overfit-
ting biases, one should have a substantial amount of data so that choosing the parameter
δ is performed truly independently from the ultimate testing phase. So, cross validation,
although traditionally used in practice, is suboptimal both in computational time and us-
age of the information. In fact, if not done property, cross validation might not even be
consistent (see [15]).

We propose a different (optimal) approach for choosing the parameter δ, which we
explain next. Owing to the min-max representation (5) we are able to define a sensible
criterion for the selection of δ. The probabilistic model Pn is plausible, yet imperfect,
representation of the true underlying probability model, which is unknown, and therefore
there are many models which are also plausible representations of the data, those are
precisely the ones conceptualized by the set

Uδ (Pn) = {P : Dc (P, Pn) ≤ δ}.

So, consider a thought experiment in which we use each P ∈ Uδ (Pn) to compute the
optimal choice of regression parameter estimate βP such that

βP = argmin EP
[(
Y − βTX

)2]
.
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By convexity of the quadratic loss function, βP is characterized by the equation

EP
[(
Y − βTPX

)
X
]

= 0.

Each such βP is therefore a plausible estimate of β∗ and, hence, the set

Λδ (n) = {βP : P ∈ Uδ (Pn)}

forms a confidence region for the parameter β∗. Note that Λδ (n) is a random set because it
depends on the sample encoded via Pn. Such confidence region is increasing in δ because
the set Uδ (Pn) is increasing in δ and therefore, given a confidence level 1−α, say 1−α =

.95, it is natural to choose δ solving the following optimization problem

δ∗n = min{δ : P∗ (β∗ ∈ Λδ (n)) ≥ 1− α},

P∗ is the true probability distribution underlying the generation of the sample data en-
coded in Pn. Under the assumption the data is independent and identically distributed
(an assumption that can be weakened to require only stationarity and weak dependence),
in [1] we establish that δ∗n → 0 and that nδ∗n → χ1−α, where χ1−α is the (1− α)-quantile
of an explicit distribution which can be calibrated directly from the testing data set.

In summary, the paper [1] established the fundamental statistical theory for the use of DRO via
optimal transport costs as a comprehensive statistical tool.

8. CONCLUSIONS AND FUTURE WORK

The diagram in Figure 2 summarizes the research activities that were pursued on this
project. At the top of the diagram we explain the motivation for using the game-theoretic
approach for valuation and risk quantification. As explained in the Introduction that this
is justified by the severe lack of data available in mining applications. We then note that
risk and valuation are different types of estimations problems, one of them, valuation is
mostly a calibration problem and it motivates using a entropy-based specification of dis-
tributional uncertainty. There is a wealth of theory in economics, statistics, and robust
optimal control which makes the use of entropy-based discrepancies relatively easy to
adapt to applications, in this case, the mining setting. We adapt the study of entropy and
divergence notions to develop a distributionally robust extreme value analysis approach
for studying extreme quantiles in [2], and apply this approach to the context of distribu-
tionally robust valuation of mines using an extended real option valuation methodology
in [5]. The papers [2] and [5] correspond to the bottom two items on the left of the dia-
gram.

On the other hand, risk quantification is inherently a statistical problem and we argue
that entropy is not necessarily a suitable approach for settings in which we are inter-
ested in quantifying out-of-sample performance (because entropy perturbations only af-
fect the likelihood of empirical observations not their actual value). So, we consider opti-
mal transport discrepancies, which are based on infinite dimensional linear programming
problems. Because optimal transport is not a conventional approach in DRO, we needed
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Lack of dataà Use game­theoretic
approach for quantification of

valuation and risk

Valuation: Use entropy for
distributional uncertainty (DR)

Risk: Use optimal transport (OT)
for distributional uncertainty

In mining extreme
environmental events contribute

substantially to private risk

Make OT a tractable approach
for DR optimization and

statistical estimation

Adapt entropy
approach to
our setting

OT not
conventional

Need to
develop OT
approach

Entropy
Conventional

Develop entropy approach to DR
extreme value analysis.

Develop a duality theory for DR
optimization using OT

Develop entropy approach to DR
extreme value analysis.

Develop a statistical min­max
estimation theory using OT

FIGURE 2. Diagram illustrating the motivation and development of our research.

to develop a duality theory which can be used to make optimal transport a tractable
method in DRO; this is done in [3]. Then, we also needed to build a theory for the sys-
tematic use of optimal transport in statistical inference problems, this was done in [1].
Papers [3] and [1] correspond to the bottom two items on the right of the diagram.

The methodological framework that we have developed, based on game-theoretic con-
siderations, can be applied to more general industries, beyond the mining setting consid-
ered.

Current work in progress and future research consists in applying the DRO frame-
work to the mining industry. In this setting, it is important to adapt the theory devel-
oped to the setting of distributionally robust extreme value analysis for climate risk. The
entropy-based theory is not well suited to study multidimensional extremes and, also,
time stationarity is not easy to accommodate without resulting in pessimistic estimates.
In contrast, the optimal transport approach is more flexible, but we first need to develop
a framework for a sensible choice of the cost function c (·). Initial work in the context of
using DRO based on optimal transport for risk valuation in mining applications is dis-
cussed in [4].

Recent work (see [14]), takes advantage of our developed theory, based on optimal
transport, to train deep neural networks. The authors in (see [14]) that state-of-the-art
neural networks are highly susceptible to adversarial attacks. They apply our DRO based
on optimal transport to train networks and show that such an approach immunizes the
network to false classifications due to a natural class of adversaries. The issue of training
against adversarial attacks has been identified a major challenge in artificial intelligence.
We believe that the applications of our approach in these types of settings is of great
interest and we intend to pursue this line of research in the future.
Acknowledgement: We thank the Norges Bank for the generous support provided for
this project.
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