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Water	Use	and	Costs

Concern:	Increasing	scarcity,	competition	and	conflict	
à increasing	long	run	CAPEX	and	OPEX	for	water	management	
à reduced	IRR	à asset	stranding,	especially	as	metal	prices	drop
Findings:
• Significant	variations	in	water	use	and	wastewater/ton	produced

• Declining	ore	grades	=	more	process	water	use
• Trends	towards	re-use	and	desalination	in	arid	regions,	and	produced	water	use	in	humid	

regions
• CAPEX	and	OPEX	typically	vary	from	5	to	10%	of	total	production	costs,	and	

efficiency/technology	improvements	suggest	long	run	cost	curves	will	hold
• Long	run	Cu/Au	gold	demand	curves	trend	up	faster	than	projected	increase	in	water	costs	

as	a	fraction	of	production	costs	
• Long	run	à industry	cost	curve	rises	à new	demand-supply	equilibrium
• WRI	Aqueduct	Scarcity	Risk	Index	does	not	predict	NAV	or	Credit	Rating
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Water	Use	and	Costs

Copper	Price		(NASDAQ) Note	the	over	
100%	variation	in	
copper	prices	
over	5	years	and	
year	over	year	
variations	of	+/-
50%
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Water	Use	and	Costs

• According	to	the study	by	the	Chilean	Copper	Commission,	mine	level cash	costs	at	Chile's	19	largest	mines	
fell	to	an	average	of	$1.285	per	pound	during	the	first	three	months	of	the	year,	down	13.3%	or	nearly	20c	
a	pound	from	the	same	quarter	of	last	year.

• …improved	mine	management,	lower	costs	for	electricity,	services	and	shipping	and	lower	treatment	and	
refining	charged	by	smelters.	The	trend	of	falling	grades,	coupled	with	increasing	water	costs	in	Chile	makes	
the	cost	cutting	even	more	remarkable.
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Bias	in	Reporting	– Reclamation	Cost	Disclosure	Analysis
Concerns:		If	mining	companies	systematically	under-report	reclamation	costs,	then	long	term	
investors	may	face	significant	residual	financial	and	reputational	liabilities.	
• Companies	may	engage	in	strategic	behavior	to	avoid	covering	actual	reclamation	needs	since	

they	were	not	budgeted	or	disclosed.	
• Do	biases	in	this	aspect	reflect	systematic	biases	in	other	disclosure?
Findings:	
• A	longitudinal	data	on	reclamation	cost,	reserves,	production	and	other	economic	factors	was	

derived	from	quarterly	reports.
• Regression	model	shows	that	controlling	for	changes	in	production,	reserves,	inflation	and	

other	factors,	the	%	of	remaining	life	of	mine	emerges	as	a	significant	predictor	of	reported	
reclamation	costs	à early	estimates	are	significantly	biased	lower.

• Comparisons	were	also	made	with	the	EPA’s	recently	released	model	which	only	uses	a	single	
disclosure	of	costs	by	a	company,	and	focuses	on	a	mean	value.

• Difficult	to	compile	data	on	actual	reclamation	costs	vs	earlier	estimates,	but	we	recommend	
reclamation	bonds	reflect	90%	probability	coverage	based	on	uncertainty	estimates

Database	and	Regression	Model	Developed	available.	
Applied	to	estimate/predict	degree	of	systematic	under-reporting	of	Reclamation	costs	
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• Mining	companies	are	required	to	estimate	reclamation	costs	prior	to	the	commencement	of	
construction	in	order	to:
• Allow	management	and	investors	to	assess	the	overall	economics	of	a	given	project	and	provide	
regulators	

• Allow	local	stakeholders	the	opportunity	to	ensure	assets	can	be	rehabilitated	responsibly	prior	to	
any	major	impact	taking	place

• These	company-formulated	estimates	(compiled	with	the	assistance	of	company-engaged	third	parties)	
are	incorporated	into:
• feasibility	study	work	(which	are	often	the	basis	for	project	sanctioning	by	management	and	
investors)

• environmental	impact	assessments	(which	often	are	the	basis	for	mine	permitting	applications)
• Depending	on	the	jurisdiction,	reclamation	bonds	are	often	required	to	ensure	mandated	post-mining	
closure	activities	are	complied	with

• In	recent	years,	regulators	have	attempted	to	standardize	mine	reclamation	plans	included	in	feasibility	
studies	(under	NI	43-101,	JORC	and	SAMREC)	to	allow	for	more	transparency	and	consistency	across	
company-level	reporting

• Reclamation	cost	estimates	are	among	the	easiest	assumptions	to	mis-specify	given	that	they	are	the	
furthest	away	from	becoming	a	reality

Bias	in	Reporting	– Background



Bias	in	Reporting	– Data

Example	Variables:

Company	level:
•Company	Owner
•Owner	Location	

Project	level:
• Primary	Commodity
• Location	of	the	mine
• Mine	type

Report	level:	
• Expected	remaining	closure	
cost	

• Expected	remaining	mine	life
• Expected	remaining	
production

• Total	Expected	Production	
• Total	Expected	Closure	Cost	
• %	Life	of	Mine	
• %	Production
• Reserves	
• Cost	production	ratio

Key	Data	Sources

Variable Source

Closure	Cost	Estimates Company	Technical	Reports	(SEDAR,	EDGAR,	ASX	
websites)

Mine	/	Company	Specific	
Factors

SNL

Macroeconomic	
Indicators	

Bloomberg,	Factset

Variable	Summary	Analysis

Variable Number

Number	of	Commodities 43

Number	of	Projects	Considered 74

Number	of	Reports 157

Number	of	Companies 65

Example	Company	Closure	Cost	Estimates

Company Project Original	 1st update 2nd update 3rd update 4th update

Asanko	Gold,	Inc.	 Esaase	Gold	Project $20.00
201005

$20.00
201012

$20.00
201102

$29.00
201109

$29.60
201305



• Compares	the	first	closure	estimate	on	a	project	
to	the	last	available	closure	cost	estimate	on	a	
project

• Of	those	projects	with	more	than	one	closure	
cost	estimate:
• 61%	showed	an	increase	in	closure	costs
• 24%	showed	a	decrease	in	closure	costs
• 15%	remained	the	same

• Nearly	20%	of	projects	from	the	first	report	to	
the	last	report	increased	by	more	than	2x

• Other	analyses	performed	were:
• Change	in	Closure	Cost	vs.	Mine	Life
• Change	in	Closure	Cost	vs.	LOM	%
• Change	in	Closure	Cost	vs.	Production	%

Bias	in	Reporting	– Methodology/Results

Increase	in	
Closure	Cost
Nearer	to	End	
of	Mine	Life



Bias	in	Reporting	– Fitted	Model
• Produces	a	model	to	estimate	closure	cost	
estimates	based	on	company	level	and	mine	
specific	factors	(as	well	as	temporal	factors)	using	
regression

• Key	conclusions	are:
• Remaining	mine	life	(time.perc)	is	a	significant	
variable,	implying	that	estimates	increase	as	
the	end	of	the	mine	life	becomes	nearer

• Mine	location,	owner	location	and	primary	
commodity	are	significant	variables	– this	is	
likely	due	to	more	lax	regulations	and	lower	
labor	costs	in	certain	jurisdictions

• Production	and	reserves	are	statistically	
significant	in	predictors	– moving	more	
material	requires	greater	amounts	of	
remediation
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Database	and	exposure	estimation/ranking	App	Developed	and	available.	
Applied	to	rank	companies	in	terms	of	VAR	or	cVAR exposure,	and	for	Real	options	Model

April 17, 2016: “Codelco, the world's top copper 
producer, said the rains forced the Chilean state-owned 
miner to suspend production at its century-old 
underground El Teniente mine, likely leading to the loss 
of 5,000 tonnes of copper production.”

10 year 1 day event ?

Mine infrastructure is designed for a 
certain level of flood or drought risk. 
Insurance may cover the residual risk 
with a payout limit.
Assumption: data used to compute the 
probabilities is representative of the 
future.

Unfortunately, climate risk exhibits 
regime like behavior è
Design risk estimate may be out of 
phase with operation period risk

Climate risk exposure is also spatially 
correlated over a business cycle = 
Elevated Portfolio Risk

Daily Flow of the 
Mapocho River 
near Santiago, 
Chile

Climate	Extremes	– Mine	site	and	Portfolio	Risk,	and	its	Change	over	Time
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Climate	Extremes	– Risk	Clustering

• Regarding	water	and	climate,	this	residual	risk	is	a	function	of	climate	cycles	in	
time,	spatial	structure	of	climate	events,	and	data	record	length

• To	address	time	clustering	long	data	records	are	needed
• To	address	spatial	clustering	at	the	portfolio	level	global	datasets	are	required
• One	class	of	datasets	can	be	leveraged:	NOAA	and	ECMWF	reanalysis
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Climate	Extremes	– Framework	to	Think	about	Climate	Risk
• Mines	use	standards	to	design	facilities	for	a	T-year	floods	and	droughts.		Often	

T=10,	100	or	1000	years	suggesting	a	high	degree	of	protection
• For	a	mine	with	a	30	(50)	year	life	this	could	mean	a	failure	probability	over	the	

life	of	the	mine	=	0.96(0.995),	0.26(0.39),	0.03	(0.05)	respectively
Failure	probability	can	be	high	over	mine	life

• Given	the	short	records	used	to	estimate	T,	there	is	a	high	uncertainty	in	the	
estimate	of	T	that	is	used	for	design.
• Climate	is	non-stationary	and	regime	like:	

• Any	given	n	years	of	data	may	give	a	highly	biased	estimate	of	T	for	the	next	n	years	
• High	under/over	design	risk

• Across	a	portfolio	of	assets,	spatial	correlation	in	failure	occurrence	is	a	concern	that	is	not	
addressed	in	design,	but	is	important	for	the	investor

17



Climate	Extremes	– Analysis	Set-up

Measure Risk	associated Potential	sources Variables

x-day	event	with	return	level	T - Localized	flooding - Reanalysis - Precipitation

- Storms - IPCC - Wind	speed
- Heatwaves - Station	networks - Temperature

Indices,	e.g.	PDSI	&	SPEI,	Heat	index - Regional	drought - Academics
- Paleoclimate Data

- Precipitation
- Potential	evapotranspiration

- Regional	wet	event - Reanalysis

- Heatwaves - Drought	Atlases - Evapotranspiration

- IPCC - Temperature
- Station	networks - Relative	Humidity

Sea-level	trend	&	cycles - Localized	flooding - IPCC Sea-level
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Choose:
event	of	interest	:	e.g.	30-day	precipitation	event
return-level	of	interest:	e.g.	10	years,	100	years

Compute the	yearly	extremum	time	
series	at	every	location
Identify the	percentile	threshold	for	
the	return	period	of	interest

Weight each	event	with	a	damage	
function
Compute the	time	series	of	weighted	
exceedances	at	the	portfolio	level

Identify events	of	interest:	all	
exceedances	of	the	percentile	
threshold	for	all	days	in	the	record	
at	each	location	

Compute VaR and	CVaR-like	
measures	to	rank	portfolios

Climate	Extremes	– Analysis	set-up	– Portfolio	Level



For	a	given	event	duration	d,	and	return-level	p,	the	process	is	the	following:
- compute	local	yearly	maxima	and	find	the	local	threshold	based	on	p,
- for	each	site	i,	obtain

𝑛",$ 𝑝, 𝑑 	and	𝐿, 𝑝, 𝑑 = 𝐶 𝑝, 𝑑 𝑉, + 𝐷 𝑝, 𝑑 𝐹,,
- define	portfolio	exposure	as	𝑆4 𝑝, 𝑑 = 	∑ 𝐿,(𝑝, 𝑑)	𝑛,,4(𝑝, 𝑑)		�

, or	
𝑅$ 𝑝, 𝑑 = 	 :; <,=∑ >?		�

?
- compute	VaRq-like	measure	using	quantile(𝑅$ 𝑝, 𝑑 ,	q)
- compute	CVaRq-like	measure	using	trapezoidal	approximation:

𝐶𝑉𝑅@ 𝑝, 𝑑 = A
(ABC)(DEA)

	 FG <,= EFH <,=
I

+ ∑ 𝑅J 𝑝, 𝑑KBA
JL@EA

20

Climate	Extremes	– Analysis	Set-up	– Portfolio	Level
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Barrick	Gold
20	(14)	out	of	21	sites	
in	the	portfolio		
experienced	a	failure	of	
a	design	for	the	30	day	
extreme	rainfall	in	the	
same	year	
Based	on	the	NOAA	
(ECMWF)	data	sets	
(numbers	that	never	
happen	if	the	yearly	
exceedance	is	modeled	
with	a	Poisson	process	
of	𝑎 = 𝑝	×	𝑁PQQR$Q

Climate	Extremes	– Result	Example,	Extreme	Rainfall,	T=10years
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Circle	size	=	Asset	NAV

Climate	Extremes	– Result	Example	– Barrick	Gold



100	year	1	day	rainfall	event
30%	NAV	Exposed	with	a	1%/yr probability

7%	with	a	5%/yr probability

10	year	30	day	rainfall	event
80%	Production		Exposed	with	a	1%/yr probability

45%	with	a	5%/yr probability
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Climate	Extremes	– Result	example	- Barrick	Gold	Portfolio	Exposure



Extreme	Rainfall:	40	mine	Rio	Tinto	portfolio.
• High	clustering:	36	exceedances	in	one	year	out	of	142
• There	is	a	pronounced	trend	and	decadal	variability

BHP	Billiton	
Rio	Tinto	

Drought:	38	mine	BHP	Billiton	portfolio.
• High	clustering	:	24	exceedances	in	one	
year	out	of	60

BHP	Billiton	

Rio	Tinto	

Annual	exceedances	of	10	year	30	day	rainfall	

Annual	exceedances	of	10	year	drought

Climate	Extremes	– Result	example	– Rio	Tinto	(40	assets),	BHP	Billiton	(38	
assets)
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For	BHP	Portfolio		for	
T=100	years

The	number	of	events	
experienced	is	5	to	6x	of	
expected

=	Very	high	residual	risk	
exposure	across	the	
Portfolio

The	more	rare	the	event	
(higher	T),	the	higher	is	
the	effect	of	clustering	
on	residual	risk	for	all	
portfolios

Fat	tail	risk	due	to	spatial	clustering:

Climate	Extremes	– Result	Example	– Four	Companies	– Two	Climate	Datasets
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Drought	Risk	Rankings	by	VAR	and	CVAR	normalized	to	portfolio	size

Climate	Extremes	– Result	example	– Comparison	across	companies	for	drought	
exposure
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Tailings	Dam	State	Identification	&	Failure	Impact	Analysis
Concern:	Tailings	dams	store	highly	toxic	wastes.	Their	failure	can	lead	to	
catastrophic,	multi-billion	$	liabilities	and	potential	loss	of	license	to	operate,	asset	
stranding.
• No	global	database	of	dams.	Yet,	failure	rate	3-5x	of	river	dams
• Sequentially	constructed	of	earthen	fill.	More	prone	to	failure
• Dominant	failure	modes:	Overtopping	due	to	high	rain,	Geotechnical	Failure.	

Mismanagement
Approach	&	Findings:
• Machine	Learning	approach	developed	for	automatic	identification	of	tailing	

dams	from	satellite	imagery
• Regression	and	indexing	based	approach	for	probabilistic	impact	analysis	and	

ranking	of	dam	failure	impact	(ecological,	population)	based	on	runout	from	
failure.

• Prediction	probabilities	from	the	model	cover	actual	Samarco impact
• However,	hazard	ratings	for	many	other	Brazilian	tailing	dams	in	the	region	are	

much	higher	than	those	estimated	for		Samarco

BARR
AGE
M	

ITABI
RUÇU
230	
Mm3

Dam	Failure, Satellite	Image	Databases	and	Risk	App	Developed	and	available.	
Applied	to	derive	probabilistic	hazard	ratings	and	ranking	for	Minas	Gerais dams	
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Made	with	local	soil,	rocks,	tailings Elevated	in	multiple	stages

Upstream
Centerline Downstream

Risk	of	seepage/stability Risk	of	seepage/stability/foundation

riskier,	$	
Medium	risk,	$$ Safer,	$$$	 29

Tailings	Dam	Facility	- Background



Tailings	Dam	Facility	- Conceptual	Risk	Profile	as	TSF	is	Filled	or	Raised
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• Unanticipated/unpriced	loss	
• Vale	and	BHP	are	paying	$1.2	billion	each	for	Samarco

• this	does	not	include	losses	in	production	(debt	restructuration)	or	internal	
damages	(only	for	compensation	and	restoration)

• Potential	Impacts:
• Loss	of	production	and	expense	on	rehabilitation
• Environmental	disaster	downstream	of	mine	+	conflict
• Stranded	Asset

31

Samarco, Brasil
Tailings Dam Failure

Tailings	Dam	Facility	– Samarco Dam	Failure	Example



• No	global	inventory	of	tailings	dams	
• At	least	one	per	site?

• Some	regions	present	high	risks,	with	a	
concentration	of	large	infrastructures	near	
population	centers	(e.g.	Minas	Gerais)

• Financial	risk	of	a	tailings	dam	failure	is	not	
reflected	in	any	point	of	the	design	and	approval	
process.	It	is	also	not	reflected	in	the	liabilities	or	in	
the	insurance	and	potential	impacts	are	almost	
never	assessed	since:	

• either	“they	never	fail”	(wrong	risk	assessment)
• or	“they	won’t	have	any	impact”	(actual	consequences)

32

• Sample	of	TSFs	around	the	world	(data	
from	multiple	sources)	

• Many	mining-intensive	countries	are	
not	pictured

Tailings	Dam	Facilities	– Global	Picture



Serious	and	very	serious	incidents

33

Tailings	Dam	Facilities	– Historical	Failures



• Objective: Assess	and	compare	the	potential	damage	that	TSFs	failures	may	cause	downstream.
• Approach:

• Statistical	model	for	volume	discharged	and	distance	impacted
• Based	on	tailings	dam	height	and	storage	capacity

• Convolution	with	Impact	area	information
• Population,	Land	Use,	High	Value	Conservation	areas

• Result:	Hazard	Rating	HR	(including	uncertainty)
• Application:	prioritize	where	it	may	be	more	or	less	important	to	pursue	inquiry	into	a	more	
detailed	TSF	risk	quantification	process

• Easy	to	update	
• Overtopping	is	the	failure	mechanism	in	30-40%	of	the	cases.	The	climate	data	can	be	used	to	
estimate	the	overtopping	probability	given	additional	topographic	information	

34

Tailings	Dam	Facilities	– Development	of	a	Hazard	Rating	Index	(HR)



• Objective: Explore	how	additional	data	and	a	new	predictor	on	TSF	failures	
impact	accepted	relationships	between	TSF	attributes,	𝑉S and	𝐷DPT

• Approach	&	Results:	
• Updated	database	of	TSF	failures
• Model	using	the	potential	energy	associated	with	the	released	volume	𝐻V as	
opposed	to	the	whole	TSF	impoundment	as	the	main	predictor	improves	the	
variance	explained

• Larger	database	is	needed	given	the	variety	in	at-site	conditions,	(rheology,	
failure	type,	etc.)	to	reduce	uncertainty	about	the	mean

• Collaboration	with	ICOLD	and	Stanford	envisioned	to	increase	the	data.

35

Tailings	Dam	Facilities	– Evolution	of	Volume	Released	and	Runout	Distance
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Uncertainty	bands	estimated	using	Bayesian	and	classical	regression

Tailings	Dam	Facilities	– Hazard	Rating	Model



BARRAGEM	
ITABIRUÇU
230	Mm3

Samarco Rating:	29.3
Several	dams	are	much	
higher

Tailings	Dam	Facilities	– Hazard	Rating	for	Minas	Gerais,	Brazil
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• Objective: Being	able	to	globally	map	TSFs	from	satellite	imagery	in	
different	types	of	climate	zones	(and	perform	basic	change	detection)

• Approach:
• Gather	high	and	medium	resolution	imagery	from	Google	Earth	and	Landsat
• Manually	identify	or	segment	tailings	dams
• Apply	pre-trained	neural	networks	on	RGB	images
• Application:	Build	a	global	map	of	TSFs	worldwide	using	mine	coordinates
• Easy	to	update	

• Image	sources:
• Landsat
• Sentinel
• Google	Earth	Pro

38

Tailings	Dam	Facilities	– TSF	Automatic	Detection	and	Monitoring



Challenges:

39

• Different	types	of	TSFs,
• Different	scales	(resolution),
• Different	environments	(climate,
nearby	land-use)
• Waste	may	not	be	very	spectrally	
different	from	surroundings
• Water	bodies
• No	pre-trained	ANN	on	multispectral
images
• Labor	intensive	to	develop	training	set

Tailings	Dam	Facilities	– TSF	Automatic	Detection	and	Monitoring



Best	Results	so	far:	classification	through	ANN

• 282	images	with	4400X4600	pixels	were	
collected	from	Google	Earth	Pro	-
spatial	resolution	varies	from	0.5	to	8m	

• Tailings	dams	were	manually	identified
• Images	were	processed,	rotated,	
translated	and	trimmed	to	give	a	total	
of	4,781negative	images	and	4,496	
positive	ones	of	size	128	x	128

• These	images	capture	the	complete	
mines	and	part	of	its	surroundings	–
small	mines	were	sometimes	grouped	
into	one	image

40

Tailings	Dam	Facilities	– TSF	Automatic	Detection	and	Monitoring



• CNN	with	4	Layers
• Pre-trained	model	with	
new	output	layer

41

Tailings	Dam	Facilities	– TSF	Automatic	Detection	and	Monitoring

Best	Results	so	far:	classification	through	
ANN
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Concerns:	Even	if	site	level	regulation	of	mine	effluents	is	effective,	collective	impacts	from	
mining	and	other	pollutant	sources	can	compromise	the	water	sources,	leading	to	social	conflict	
and	loss	of	license	to	operate.
• Is	there	evidence	to	quantify	these	effects	and	attribute	them	to	specific	sources?
• Do	current	regulatory	processes	effectively	address	these	risks?
Findings:
• Significant	legacy	water	pollution	effects	of	mining	are	identified	in	all	countries
• Data	sets	to	pursue	space-time	trend	identification	and	attribution	are	sparse
• Mining	companies	face	considerable	risks	as	increasing	water	scarcity	and	competition	

exacerbate	the	impacts	of	polluted	waters
• Environmental	Impact	Assessments	and	associated	bonds	are	likely	highly	inadequate	to	

address	these	challenges
• Risk	quantification	for	the	industry	and	for	a	mine	is	consequently	difficult.
• An	approach	to	regulation	that	builds	in	watershed	outcomes	and	attribution	is	needed.

Database	Water quality	and	predictive	factors	developed	for	basins	in	Peru	&	USA
Regression	models	illustrate	trends	and	dependence	on	aggregate	mining	activity

Cumulative	Water	Pollution	Effects	– Regulatory	Effectiveness	and	Outcomes
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Cumulative	Pollution	Effects	– Proposed	Vision	to	Reduce	Stranding	Potentials
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