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Water Use and Costs

Concern: Increasing scarcity, competition and conflict

-2 increasing long run CAPEX and OPEX for water management

- reduced IRR = asset stranding, especially as metal prices drop

Findings:

* Significant variations in water use and wastewater/ton produced
* Declining ore grades = more process water use

 Trends towards re-use and desalination in arid regions, and produced water use in humid
regions

 CAPEX and OPEX typically vary from 5 to 10% of total production costs, and
efficiency/technology improvements suggest long run cost curves will hold

* Long run Cu/Au gold demand curves trend up faster than projected increase in water costs
as a fraction of production costs

* Longrun -2 industry cost curve rises 2 new demand-supply equilibrium

 WRI Aqueduct Scarcity Risk Index does not predict NAV or Credit Rating



Water Use and Costs
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Water Use and Costs
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* According to the study by the Chilean Copper Commission, mine level cash costs at Chile's 19 largest mines

fell to an average of $1.285 per pound during the first three months of the year, down 13.3% or nearly 20c
a pound from the same quarter of last year.

Caida generalizada de costos

Cash Cost Cochilco

e ..improved mine management, lower costs for electricity, services and shipping and lower treatment and
refining charged by smelters. The trend of falling grades, coupled with increasing water costs in Chile makes
the cost cutting even more remarkable.



Industry grades continue to decline
Weighted average copper grade’, %

14

12 \'\
1.0 \/\

N———

0.8 L L] Ll L] L Ll L)
CY01 CY05 CY09 CY13 CY17e CY2le CY25e

Water use in copper mining in Chile
m?second
30

20

10

CY09 CY13 CY17e CY21e CY25e

B Fresh water mSea water

il

bhpbilliton

Deficit expected to emerge at the end of the decade
Copper, Mt

30
25 e
20 —e= —_—
15 ——

CY15e CY17e CY19e CY21e CY23e CY25e
—Primary demand ==Primary supply’

Industry-wide challenges expected to maintain
shape of the cost curve in the long run
C1 cash cost, copper US$/Ib

Cumulative production

—CY15e =——CY25e
o
)

bhpbilliton



WATER USE AND COSTS

BIAS IN REPORTING

CLIMATE EXTREMES

TAILINGS DAMS FAILURES

CUMULATIVE WATER POLLUTION EFFECTS




Bias in Reporting — Reclamation Cost Disclosure Analysis

Concerns: If mining companies systematically under-report reclamation costs, then long term

investors may face significant residual financial and reputational liabilities.

 Companies may engage in strategic behavior to avoid covering actual reclamation needs since
they were not budgeted or disclosed.

* Do biases in this aspect reflect systematic biases in other disclosure?

Findings:

* Alongitudinal data on reclamation cost, reserves, production and other economic factors was
derived from quarterly reports.

* Regression model shows that controlling for changes in production, reserves, inflation and
other factors, the % of remaining life of mine emerges as a significant predictor of reported
reclamation costs = early estimates are significantly biased lower.

 Comparisons were also made with the EPA’s recently released model which only uses a single
disclosure of costs by a company, and focuses on a mean value.

* Difficult to compile data on actual reclamation costs vs earlier estimates, but we recommend

reclamation bonds reflect 90% probability coverage based on uncertainty estimates
Database and Regression Model Developed available.

Applied to estimate/predict degree of systematic under-reporting of Reclamation costs



Bias in Reporting — Background

Mining companies are required to estimate reclamation costs prior to the commencement of
construction in order to:

* Allow management and investors to assess the overall economics of a given project and provide

regulators

* Allow local stakeholders the opportunity to ensure assets can be rehabilitated responsibly prior to

any major impact taking place
These company-formulated estimates (compiled with the assistance of company-engaged third parties)
are incorporated into:

» feasibility study work (which are often the basis for project sanctioning by management and

investors)

* environmental impact assessments (which often are the basis for mine permitting applications)
Depending on the jurisdiction, reclamation bonds are often required to ensure mandated post-mining
closure activities are complied with
In recent years, regulators have attempted to standardize mine reclamation plans included in feasibility
studies (under NI 43-101, JORC and SAMREC) to allow for more transparency and consistency across
company-level reporting
Reclamation cost estimates are among the easiest assumptions to mis-specify given that they are the
furthest away from becoming a reality



Bias in Reporting — Data

Report level:
* Expected remaining closure

Example Variables:

Company level: cost

e Company Owner * Expected remaining mine life

* Owner Location * Expected remaining
production

Project level: * Total Expected Production

* Primary Commodity < Total Expected Closure Cost
* Location of the mine * % Life of Mine
* Mine type * % Production

* Reserves

e Cost production ratio

Key Data Sources

Variable Source

Closure Cost Estimates Company Technical Reports (SEDAR, EDGAR, ASX

websites)

Mine / Company Specific SNL
Factors

Macroeconomic Bloomberg, Factset

Indicators

Variable Summary Analysis
Variable Number
Number of Commodities 43
Number of Projects Considered 74
Number of Reports 157
Number of Companies 65

Company

Example Company Closure Cost Estimates

Project Original 15t update 2" update 34 update 4t ypdate

Asanko Gold, Inc.

$20.00 $20.00 $20.00 $29.00 $29.60

Esaase Gold Project 201005 201012 201102 201109 201305




Bias in Reporting — Methodology/Results

Compares the first closure estimate on a project
to the last available closure cost estimate on a
project

Of those projects with more than one closure
cost estimate:

* 61% showed an increase in closure costs

* 24% showed a decrease in closure costs

* 15% remained the same

Nearly 20% of projects from the first report to
the last report increased by more than 2x

Other analyses performed were:
e Change in Closure Cost vs. Mine Life
* Change in Closure Cost vs. LOM %
e Change in Closure Cost vs. Production %

Increase in
Closure Cost
Nearer to End
of Mine Life

0 { 2
., 0.0*1- - LI



Bias in Reporting — Fitted Model

* Produces a model to estimate closure cost
estimates based on company level and mine
specific factors (as well as temporal factors) using
regression

* Key conclusions are:

* Remaining mine life (time.perc) is a significant
variable, implying that estimates increase as
the end of the mine life becomes nearer

* Mine location, owner location and primary
commodity are significant variables — this is
likely due to more lax regulations and lower
labor costs in certain jurisdictions

* Production and reserves are statistically
significant in predictors — moving more
material requires greater amounts of
remediation

it

i Call:

## \m(formula = cc ~ ., data = M.cc)

it

## Residuals:

it Min 1Q Median 3Q Max
## -2,1785 -0.5674 0.1584 0.5395 1.8099
it

i Coefficients:

# Estimate Std. Error t value Pr(>|t|)

## (Intercept) 3.15943  0.95387 3.312 0.001168

## prod 0.28975  0.05297 5.470 1.92e-07 x
#t# reserves 0.37912 0.04485 8.454 2.75e-14 sxx
i time.perc 1.69377 0.38458  4.404 2.05e-05 xx
## f.commodityGold 0.99442  0.16184 6.145 7.34e-09 wx
## f.countryMexico -1.23404  0.24223 -5.095 1.07e-06 *kx
## f.countryOther -0.69523  0.15418 -4.509 1.33e-05 skx
## f.countryUSA -0.71393  0.24820 -2.876 0.004629 *x

## f.owner.countryAustralia 2,50152 0.57795 4.328 2.79e-05 sokx
## f.owner.countryCanada 1.45373  0.48252 3.013 0.003056 *x

## f.owner.countryUnited.Kingdom 1.80793  0.57148 3.164 0.001899

#i# f.owner.countryUSA 1.89118 0.51191 3.694 0.000312
=

## Signif. codes: 0 'sxx' 0.001 "xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

it

## Residual standard error: 0.7952 on 145 degrees of freedom
## Multiple R-squared: 0.6392, Adjusted R-squared:
## F-statistic: 23.35 on 11 and 145 DF, p-value: < 2.2e-16

0.6118
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Climate Extremes — Mine site and Portfolio Risk, and its Change over Time

|||||||||||||||||||||||||||||||||||||||||||||||||

"Mapocho River : Mine infrastructure is designed for a
‘near Santiago, t certain level of flood or drought risk.

] Insurance may cover the residual risk
with a payout limit.

700 &0 a00 1000

Chile

: Assumption: data used to compute the
| ‘ { probabilities is representative of the
[N future.
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Unfortunately, climate risk exhibits
regime like behavior =

1960 1870 1990
5737002 Time

April 17, 2016: “Codelco, the world's top copper Design risk estimate may be out of
producer, said the rains forced the Chilean state-owned phase with operation period risk

miner to suspend production at its century-old

underground El Teniente mine, likely leading to the loss Climate risk exposure is also spatially

of 5,000 tonnes of copper production.” correlated over a business cycle =

Elevated Portfolio Risk

Database and exposure estimation/ranking App Developed and available.

Applied to rank companies in terms of VAR or cVAR exposure, and for Real options Model



Climate Extremes — Risk Clustering

* Regarding water and climate, this residual risk is a function of climate cycles in
time, spatial structure of climate events, and data record length

* To address time clustering long data records are needed
* To address spatial clustering at the portfolio level global datasets are required
* One class of datasets can be leveraged: NOAA and ECMWEF reanalysis



Climate Extremes — Framework to Think about Climate Risk

 Mines use standards to design facilities for a T-year floods and droughts. Often
T=10, 100 or 1000 years suggesting a high degree of protection

 For a mine with a 30 (50) year life this could mean a failure probability over the
life of the mine = 0.96(0.995), 0.26(0.39), 0.03 (0.05) respectively

Failure probability can be high over mine life

* Given the short records used to estimate T, there is a high uncertainty in the
estimate of T that is used for design.

e Climate is non-stationary and regime like:
* Any given n years of data may give a highly biased estimate of T for the next n years
High under/over design risk

* Across a portfolio of assets, spatial correlation in failure occurrence is a concern that is not
addressed in design, but is important for the investor



Climate Extremes — Analysis Set-up

x-day event with return level T - Localized flooding |- Reanalysis - Precipitation
- Storms - IPCC - Wind speed
- Heatwaves - Station networks - Temperature

Indices, e.g. PDSI & SPEI, Heat index - Regional drought - Academics - Precipitation
- Paleoclimate Data - Potential evapotranspiration
- Regional wet event - Reanalysis

o 5 CEWEWES - Drought Atlases - Evapotranspiration

- IPCC - Temperature
- Station networks - Relative Humidity

Sea-level trend & cycles - Localized flooding |- IPCC Sea-level

18



Climate Extremes — Analysis set-up — Portfolio Level

Choose:
event of interest : e.g. 30-day precipitation event
return-level of interest: e.g. 10 years, 100 years

Compute the yearly extremum time |ldentify events of interest: all
series at every location exceedances of the percentile

Identify the percentile threshold for threshold for all days in the record

the return period of interest at each location

Weight each event with a damage
function Compute VaR and CVaR-like

Compute the time series of weighted measures to rank portfolios
exceedances at the portfolio level

19



Climate Extremes — Analysis Set-up — Portfolio Level

For a given event duration d, and return-level p, the process is the following:

compute local yearly maxima and find the local threshold based on p,
- for each site i, obtain
n;:(p,d) and Li(p,d) = C(p,d)V; + D(p, d)F,

- define portfolio exposure as S¢(p,d) = 2; Li(p,d) nj(p,d) or

St(p,d
Rt(p) d) — zt:(?/l )

- compute VaRg-like measure using quantile(R;(p, d), q)
- compute CVaRqg-like measure using trapezoidal approximation:

. 1 Rq(p;d)+Rm(p»d) m—1
CVRq(p,d) = s {F220 + I Re(p, )}

20



Climate Extremes — Result Example, Extreme Rainfall, T=10years

Number of exceedances

Number of exceedances

Barrick Gold - 2015 producing assets, 21 assets
1-day extreme rainfall - climate data: NOAA.CIRES.V2c

MK p-value = 0.00049

<@

year

Barrick Gold - 2015 producing assets, 21 assets
1-day extreme rainfall - climate data: ECMWF.ERA.20C

MK p-value = 0.02

S~

» /
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Number of exceedances

Number of exceedances

20
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14

Barrick Gold - 2015 producing assets, 21 assets
30-day extreme rainfall - climate data: NOAA.CIRES.V2c

MK p-value = 3.1e-05

1920 1940 1960 1980 2000

year

Barrick Gold - 2015 producing assets, 21 assets
30-day extreme rainfall - climate data: ECMWF.ERA.20C
MK p-value = 0.14

<

Barrick Gold

20 (14) out of 21 sites
in the portfolio
experienced a failure of
a design for the 30 day
extreme rainfall in the
same year

Based on the NOAA
(ECMWF) data sets
(numbers that never
happen if the yearly
exceedance is modeled
with a Poisson process
of a = p X Ngssets

21



Climate Extremes — Result Example — Barrick Gold

—5) -

Bamck Gold — TD Secunties locations

200

Circle size = Asset NAV



Climate Extremes — Result example - Barrick Gold Portfolio Exposure

Barrick Gold NAV Exposed to 100 year, 1 day rainfall event Barrick Gold Production Exposed to 10 year, 30 day rainfall event
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Probability of Exceedance Probability of Exceedance

100 year 1 day rainfall event 10 year 30 day rainfall event

30% NAV Exposed with a 1%/yr probability 80% Production Exposed with a 1%/yr probability
7% with a 5%/yr probability 45% with a 5%/yr probability
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Climate Extremes — Result example — Rio Tinto (40 assets), BHP Billiton (38
assets)

Annual exceedances of 10 year drought
BHP Billiton T

15 20
1 L

Number of exceedances
10
L

Annual exceedances of 10 year 30 day rainfall - . — bor 00 o : ‘ T
3 B 0 o ' o4 0 0 0000 000 0000 00000 O0 000O 000000 00 00 0

Rio Tinto ° {050 1960 1970 1980 {090 0 M

Drought: 38 mine BHP Billiton portfolio.

o
©

o
N

* High clustering : 24 exceedances in one
year out of 60

20

Number of excee
15

10

Extreme Rainfall: 40 mine Rio Tinto portfolio.

* High clustering: 36 exceedances in one year out of 142
e There is a pronounced trend and decadal variability
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Climate Extremes — Result Example — Four Companies — Two Climate Datasets

7.00

6.00

5.00

4.00

3.00

2.00

1.00

0.00

Fat tail risk due to spatial clustering:

Ratio of actual number of events in excess of 100-year 1-day extreme rainfall for
Portfolio relative to what is expected by chance, for 3 thresholds of the portfolio cdf

" Based on ECMWF-ERA-20C 1900-2010 reanalysis

Based on NOAA-CIRES 1851-2014 reanalysis

Barrick Gold

BHP Billiton

Newmont

Rio Tinto

® 90th

B 95th

Barrick Gold

M 99th

BHP Billiton

Newmont

Rio Tinto

For BHP Portfolio for
T=100 years

The number of events
experienced is 5 to 6x of
expected

= Very high residual risk
exposure across the
Portfolio

The more rare the event
(higher T), the higher is
the effect of clustering
on residual risk for all
portfolios
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Climate Extremes — Result example — Comparison across companies for drought
exposure

Drought Risk Rankings by VAR and CVAR normalized to portfolio size

Table 2. Ranking of 15 Companies Based on Ry ¢5(0.1) and CVS'5(0.1) Measures for a 12 Months Drought Event, Obtained Using the
Dai PDSI Data Set and Mine Valuation Obtained From Broker Reports From TD Securities®

Company Roos (01 ) Rank Ro.os (01 ) CVRO.95(0.1 ) Rank CVRO.QS (01 )
Agnico Eagle 0.44 9 0.32 11
All 15 0.17 16 0.20 15
B2Gold 0.33 13 0.34 9
Barrick Gold 0.31 14 0.25 13
Capstone Mining 0.82 1 0.59 1
Eldorado 0.54 4 0.42 7
First Quantum Mineral 0.44 8 0.48 4
Franco Nevada 0.28 15 0.20 16
Goldcorp 0.47 6 0.37 8
Hudbay 0.51 5 0.33 10
lamgold 0.45 7 0.50 3
Kinross 0.34 11 0.26 12
Lundin Mining 0.35 10 0.43 6
3 0.45 =

New Gold 0.56

Newmon .34 [}

Teck Resources

®A lower rank means a higher exposure.
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Tailings Dam State Identification & Failure Impact Analysis

Concern: Tailings dams store highly toxic wastes. Their failure can lead to

catastrophic, multi-billion $ liabilities and potential loss of license to operate, asset

stranding.

* No global database of dams. Yet, failure rate 3-5x of river dams

* Sequentially constructed of earthen fill. More prone to failure

 Dominant failure modes: Overtopping due to high rain, Geotechnical Failure.
Mismanagement

Approach & Findings:

 Machine Learning approach developed for automatic identification of tailing
dams from satellite imagery

* Regression and indexing based approach for probabilistic impact analysis and
ranking of dam failure impact (ecological, population) based on runout from
failure.

* Prediction probabilities from the model cover actual Samarco impact

 However, hazard ratings for many other Brazilian tailing dams in the region are
much higher than those estimated for Samarco

Dam Failure, Satellite Image Databases and Risk App Developed and available.

Applied to derive probabilistic hazard ratings and ranking for Minas Gerais dams



Tailings Dam Facility - Background

Made with local soil, rocks, tailings Elevated in multiple stages
Risk of seepage/stability Risk of seepage/stability/foundation

Waste rock is
ground down

o €  Addition of water and
J J chemical solution
P2
D . ,

Different types of
tailings dams

Extraction of
the waste
rock

o Upstream
9 Centreline

© Downstream

Sludge basin

riskier, S Upstream

Medium risk, SS Centerline Safer, $$ Downstream ”



Tailings Dam Facility - Conceptual Risk Profile as TSF is Filled or Raised

- 100

- 75

Asiy

25

801
60
=
-
T 401
(4]
o /
/ /
20 1 /
0 -
1990 2000 2010 2020
Time

30



Tailings Dam Facility — Samarco Dam Failure Example
* Unanticipated/unpriced loss

* Vale and BHP are paying $1.2 billion each for Samarco

* this does not include losses in production (debt restructuration) |
damages (only for compensation and restoration)

* Potential Impacts:
* Loss of production and expense on rehabilitation Tailinge bam Failure
* Environmental disaster downstream of mine + conflict
* Stranded Asset

31



Tailings Dam Facilities — Global Picture

* No global inventory of tailings dams
e At least one per site?

* Some regions present high risks, with a

* Sample of TSFs around the world (data
from multiple sources)

concentration of large infrastructures near * Many mining-intensive countries are
population centers Fe.g. Minas Gerais) not pictured
* Financial risk of a tailings dam failure is not
reflected in any point of the design and approval .. .
process. It is also not reflected in the liabilities or in . b oo

the insurance and potential impacts are almost
never assessed since:

* either “they never fail” (wrong risk assessment)
* or “they won’t have any impact” (actual consequences)

|II
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Tailings Dam Facilities — Historical Failures

Mean no. events

Serious and very serious incidents

2.5

2.0

1.5

1.0

i

|
1970

|
1980

1990 2000 2010

Year
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Tailings Dam Facilities — Development of a Hazard Rating Index (HR)

* Objective: Assess and compare the potential damage that TSFs failures may cause downstream.

* Approach:
e Statistical model for volume discharged and distance impacted
* Based on tailings dam height and storage capacity
e Convolution with Impact area information
* Population, Land Use, High Value Conservation areas
* Result: Hazard Rating HR (including uncertainty)

* Application: prioritize where it may be more or less important to pursue inquiry into a more
detailed TSF risk quantification process

e Easy to update

* Overtopping is the failure mechanism in 30-40% of the cases. The climate data can be used to
estimate the overtopping probability given additional topographic information



Tailings Dam Facilities — Evolution of Volume Released and Runout Distance

* Objective: Explore how additional data and a new predictor on TSF failures
impact accepted relationships between TSF attributes, V. and D,,, ;4

* Approach & Results:
e Updated database of TSF failures

* Model using the potential energy associated with the released volume H¢ as
opposed to the whole TSF impoundment as the main predictor improves the
variance explained

 Larger database is needed given the variety in at-site conditions, (rheology,
failure type, etc.) to reduce uncertainty about the mean

e Collaboration with ICOLD and Stanford envisioned to increase the data.




Tailings Dam Facilities — Hazard Rating Model

1 2

Calculate V/: Calculate Dmax

*log (VF )=-0.477+09541og(V1)  *log (D max )=0.539+0.497 log (Hy)
H=HVAVE/VT)

V= released volume of tailings in D= distance traveled by the tailings
Mm? in km
V;=stored volume of tailings in Mm? H=dam height in m
3 4
Estimate A Calculate Hg
Hp=M+ M+ M3+ My+Ms+M;

s Bﬂffer circu.lar. AN’ Yma M, =log(population in A), M,=log(cropland in
2. A= Areas within buffer where A), M,=log(urban area in A),

CiEvALIoN siSlevatiamat sk M= log(water surface in A), Ms=log(forests
in A), and M= log(Grassland in A)

Uncertainty bands estimated using Bayesian and classical regression
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Tailings Dam Facilities — Hazard Rating for Minas Gerais, Brazil

Samarco Rating: 29.3
Several dams are much

higher * .
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Tailings Dam Facilities — TSF Automatic Detection and Monitoring

e Objective: Being able to globally map TSFs from satellite imagery in
different types of climate zones (and perform basic change detection)

e Approach:

* Gather high and medium resolution imagery from Google Earth and Landsat
Manually identify or segment tailings dams
Apply pre-trained neural networks on RGB images

Application: Build a global map of TSFs worldwide using mine coordinates
Easy to update

* I[mage sources:
* Landsat
* Sentinel
* Google Earth Pro




Tailings Dam Facilities — TSF Automatic Detection and Monitoring

Challenges:
 Different types of TSFs,

 Different scales (resolution),

* Different environments (climate,
nearby land-use)

* Waste may not be very spectrally
different from surroundings

* Water bodies

* No pre-trained ANN on multispectral
Images

* Labor intensive to develop training set

Figure 1 — Types of tailings dams can be represented by these six examples. The first row show
TSFs with geometrical shapes with clearly define edges which are usually built in flat areas. The
shape for the second row examples 1s not as well defined and are usually built in uneven areas.
The last two examples show tailings dams that were built on top of mountains, to take advantage
of its convexity and reduce costs, which are usually called valley impoundments. It 1s also
convenient, as it can usually be expanded without effort. In these cases its expansion would be
visible in a satellite image, as 1t would draw a new horizontal contour in the mountain that
contains it. For the first cases, expansion usually means building more facilities, which are
usually observed close to each other.
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Tailings Dam Facilities — TSF Automatic Detection and Monitoring

Best Results so far: classification through ANN

Positive

.- .

» 282 images with 4400X4600 pixels were
collected from Google Earth Pro -

Negative

spatial resolution varies from 0.5 to 8m
* Tailings dams were manually identified

* Images were processed, rotated,
translated and trimmed to give a total
of 4,781negative images and 4,496
positive ones of size 128 x 128

* These images capture the complete
mines and part of its surroundings —
small mines were sometimes grouped

into one image

Figure 2 — Full mine with its environment, split into positive (containing TSFs) and negative
images.
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Tailings Dam Facilities — TSF Automatic Detection and Monitoring

Best Results so far: classification through

ANN

* CNN with 4 Layers

* Pre-trained model with

new output layer

Accuracy Precision Recall FP Rate
CNN4L 94 7% 96.2% 93.2% 3.7%
i 97.5% 98.7% 96.3% 1.3%
Xception
Xception CNN4L
105.00% 105.00%
100.00% 0?00000000000000000 100.00%
2000 _oL,00%200004%g
9s00% | *°*° oo ® 95.00%
90.00% 90.00%
85.00% | ® 85.00%
80.00% 80.00%
75.00% 75.00%
=
70.00% 70.00%
0 5 10 15 20 25 0 10 20 30 40 50 60
e Train Accuracy e TestAccuracy eTrain Accuracy ¢ TestAccuracy
ROC curve - Model ROC curve - Model
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1o - " i ,”’
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Cumulative Water Pollution Effects — Regulatory Effectiveness and Outcomes

Concerns: Even if site level regulation of mine effluents is effective, collective impacts from

mining and other pollutant sources can compromise the water sources, leading to social conflict

and loss of license to operate.

* |sthere evidence to quantify these effects and attribute them to specific sources?

* Do current regulatory processes effectively address these risks?

Findings:

» Significant legacy water pollution effects of mining are identified in all countries

* Data sets to pursue space-time trend identification and attribution are sparse

* Mining companies face considerable risks as increasing water scarcity and competition
exacerbate the impacts of polluted waters

* Environmental Impact Assessments and associated bonds are likely highly inadequate to
address these challenges

* Risk quantification for the industry and for a mine is consequently difficult.

* An approach to regulation that builds in watershed outcomes and attribution is needed.

Database Water quality and predictive factors developed for basins in Peru & USA

Regression models illustrate trends and dependence on aggregate mining activity



Cumulative Pollution Effects — Proposed Vision to Reduce Stranding Potentials

Retrospective Evaluation
Mining Environmental
Governance in Peru

Scope

EIA
Assessment

Cumulative
effects at
the basin
scale

Stakeholder
engagement
and

conflicts

Regulatory
setting and
enforcement
through time

Learnings:
Relation between EIA

performance, actual
cumulative effects,
stakeholder
engagement,
regulatory setting,
conflicts, and
investment principles

Design and Testing of a new ’
Adaptive Monitoring System ’

\ 4

Deliverables

* Consolidated
database

* Prototypeofa
project-level
framework for
EIA and permit
revision based
on time,
stakeholder
input, and early
warning system
based on
statistical tools
for attribution
of impacts

Scope

Institutional
design

Framework for
monitoring and
communication of
analytical results

Basin-scale
application

Proposal
regarding review
board
/adjudication
body

Extension to new
watershed

Deliverables

* Identification of
relevant actors

e Cost-effective and
transparentdata
collection process

e Usable
environmental
performance
metrics

* Early-warning
system for permit
and bond revision

* Financial support
mechanism

>

Policy
Recommendations

Scope
*  Proposal submitted
to IFC/Peruvian
officials:
- Guidelines for ESIA
process
- standardized post-
EIA monitoring
procedure including
early warning
systems based on
data analysis for
impact attribution
triggering EIA/bond
revisions a specific
sites, and usable in a
tribunal
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