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ABSTRACT

Although land–atmosphere coupling is thought to play a role in shaping themean climate and its variability,

it remains difficult to quantify precisely. The present study aims to isolate relationships between early

morning surface turbulent fluxes partitioning [i.e., evaporative fraction (EF)] and subsequent afternoon

convective precipitation frequency and intensity. A general approach involving statistical relationships

among input and output variables, known as sensitivity analysis (SA), is used to develop a reduced complexity

metamodel of the linkage between EF and convective precipitation. Two additional quantities characterizing

the early morning convective environment, convective triggering potential (CTP) and low-level humidity

(HIlow) deficit, are included. The SA approach is applied to the North American Regional Reanalysis (NARR)

for June–August (JJA) conditions over the entire continental United States, Mexico, and Central America do-

main. Five land–atmosphere coupling regimes are objectively characterized based on CTP, HIlow, and EF. Two

western regimes are largely atmospherically controlled, with a positive link to CTP and a negative link to HIlow.

The other three regimes occupy Mexico and the eastern half of the domain and show positive links to EF and

negative links to HIlow, suggesting that both surface fluxes and atmospheric humidity play a role in the triggering

of rainfall in these regions. The regimes associated with high mean EF also tend to have high sensitivity of rainfall

frequency to variations in EF. While these results may be sensitive to the choice of dataset, the approach can be

applied across observational, reanalysis, and model datasets and thus represents a potentially powerful tool for

intercomparison and validation as well as for characterizing land–atmosphere interaction regimes.

1. Introduction

Sensitivity analysis (SA) is a branch of statistics ap-

plied to the study of complex models. Its main purpose

is the estimation of model output-to-input sensitivities.

SA has been widely applied in a diverse range of fields

including social sciences, engineering, economics, and

geophysical sciences for research prioritization (e.g., to

identify which parameters warrant further investiga-

tion or validation through measurements); for model

synthesis to aid in comprehension of complex models;

or for system investigation (e.g., to identify which
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regions of input space render the system most unstable

to perturbations).

For a multidimensional, strongly coupled, nonlinear

system like the climate system, estimates of output-to-

input sensitivities are clearly desirable not only from an

operational standpoint (e.g., prediction) but from a the-

oretical one as well. State-of-the-art climate models in-

clude dozens of 3D fields on spatial resolutions of tens to

hundreds of kilometers and temporal resolutions of

hours. Given the overall complexity of such models, not

to mention the real climate system, complete under-

standing of climate system processes is often limited,

especially when multiple interacting processes are in-

volved. Methodologies that reduce complexity can provide

powerful insights into climate processes. In this regard,

SA may facilitate analysis of the climate system or sub-

system thereof by employing simpler and faster statistical

models known as metamodels. A metamodel isolates the

most important variables in a combination of physical

processes. It will be seen how various combinations of

inputs can be tested by the metamodel to find the vari-

ables that most strongly impact convective precipitation.

Moreover, because a metamodel can be calibrated against

real observations or climate model outputs, it can be used

for process-level evaluation of models.

In the present study, we apply SA to the study of land–

atmosphere coupling. As broadly understood, land–

atmosphere coupling encompasses the interactions and

processes (radiation, turbulence, hydrology, biogeochem-

istry) linking the land surface and overlying atmosphere;

for extensive reviews, see Seneviratne et al. (2010) and

Betts andSilvaDias (2010).Oneaspect of land–atmosphere

coupling that has received significant attention involves

potential feedbacks between precipitation and soil

moisture; as such feedbacks are expected to impact the

variability of climate across multiple time scales and to

modulate the persistence and intensity of droughts and

the occurrence of extreme events. However, while the

processes involved in land–atmosphere coupling are ex-

pected to influence mean climate and its variability, iso-

lating unambiguous signatures of this coupling in both

observations and models has proved difficult. Among the

key challenges are the spatial heterogeneity and scale

dependence of the processes involved.

Our objective here is to isolate the relationships be-

tween early morning surface turbulent flux partitioning,

represented in terms of the evaporative fraction (EF;

i.e., the ratio of latent heat flux to the sum of sensible and

latent heat fluxes), and subsequent (same day) convec-

tive precipitation frequency and intensity. Previous stud-

ies, notably Findell and Eltahir (2003a,b) and Findell et al.

(2011), have examined aspects of this coupling using in

situ radiosonde data and the North American Regional

Reanalysis (NARR) data in a relatively simple statistical

framework Mesinger et al. (2006). In what follows, we

demonstrate the utility of SA for diagnosing the EF–

convective precipitation relationships described in Findell

et al. (2011). The analysis is performed using the same

data as in Findell et al. (2011), although the methodol-

ogy presented can be used with any kind of model or

observational products.

The remainder of this paper is organized as follows. A

detailed overview of the SA methodology is provided in

appendix 5. A review of land–atmosphere coupling over

the continental United States (CONUS) is given in

section 2 together with a first analysis of the datasets

used in this paper. Results of the analysis are presented

in section 3. Finally, conclusions and perspectives are

presented in section 4.

2. Land–atmosphere coupling over CONUS

a. Introduction

The land surface and the overlying atmosphere in-

teract through a set of coupled energy and water cycle

feedback processes (Brubaker and Entekhabi 1996; Betts

et al. 1996; Koster et al. 2004; Santanello et al. 2007). The

coupling between the land surface and the atmosphere is

mediated by the state of the surface, which modifies the

partitioning of both the surface energy and water budgets

(Koster and Suarez 1994; Milly and Dunne 1994; Robock

et al. 1995; Salvucci 2001; Seneviratne et al. 2006, 2010)

and over time scales ranging fromminutes to interannual,

and spatial scales ranging frommillimeters to hundreds of

kilometers (Pielke et al. 1998; Katul et al. 2012). In turn,

the surface energy and water budgets affect the state of

the overlying atmosphere, including near-surface tur-

bulence, thermodynamic profiles, stability, clouds, pre-

cipitation, and dynamics (Pan and Mahrt 1987; Ek and

Holtslag 2004; Gentine et al. 2007; Seneviratne et al.

2010; Findell et al. 2011; Gentine et al. 2013a). Changes

in the atmospheric state, especially those within the plan-

etary boundary layer (PBL; Santanello et al. 2005, 2007,

2009, 2011), can further feed back onto the surface

across different spatial and temporal scales (Brubaker

and Entekhabi 1996; Gentine et al. 2010).

How soil moisture ultimately affects precipitation has

important consequences for interpreting and predicting

variability in the real climate system (Koster et al. 2003;

Guo et al. 2012) as well as in models (Koster et al. 2004;

Dirmeyer et al. 2006; Guo et al. 2006; Koster et al. 2006;

Seneviratne et al. 2006; Koster and Mahanama 2012). For

example, the occurrence of positive feedbacks between

anomalous soil moisture conditions and subsequent pre-

cipitation may contribute to the persistence of extreme
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drought conditions and heat waves (Entekhabi et al. 1992;

Sch€ar and Jendritzky 2004; Sch€ar et al. 2004; Seneviratne

et al. 2006). Moreover, synoptic and seasonal forecasts

have been shown to be extremely sensitive to soil moisture

initialization (Sutton et al. 2006; Guo et al. 2012). Quan-

titative assessment of the impacts of large-scale defor-

estation, land usemodification, and anthropogenic climate

change requires detailed mechanistic understanding of the

soil moisture–precipitation feedback (Notaro 2008). Soil

moisture is currently thought to impact precipitation in the

following ways: (i) local evaporative recycling (Eltahir

1989; Savenije 1995; Dirmeyer et al. 2009), (ii) large-scale

advection and/or convergence of atmospheric moisture

(Pal and Eltahir 2003; Cook et al. 2006; Taylor 2008;

Lintner and Neelin 2009; Hohenegger et al. 2009; Lintner

et al. 2013), and (iii) modification of the properties of the

PBL (Betts et al. 1996; Pal and Eltahir 2001; Findell and

Eltahir 2003a; Gentine et al. 2013b). Methods (i) and (ii)

may be related through considerations of scale: while local

evaporative recycling is assumed to occur over a suffi-

ciently large region such that any evaporated moisture

ultimately remains in that region, for smaller regions of

interest the nonlocal horizontal advective transport pro-

cesses may become dominant.

For (iii), two mechanisms are thought to operate at

daily time scales. The first mechanism is related to low-

ering of PBL height and increasing PBL moist static en-

ergy (MSE) in the presence of positive soil moisture

anomalies (Betts et al. 1996; Pal and Eltahir 2001; Findell

and Eltahir 2003a; Gentine et al. 2013b). That is, a posi-

tive soil moisture anomaly leads to an increase of latent

heat flux (and a decrease of sensible heat flux), thereby

reducing the atmospheric boundary layer (ABL) height

and increasing MSE (Gentine et al. 2013b). In fact, MSE

per unit PBL volume may increase more strongly than

MSE itself because of PBL lowering. Additionally, the

level of free convection (LFC) and lifting condensation

level (LCL) are lowered toward the PBL top, leading to

an increased potential for convective development. At-

tendant column radiative changes can, in turn, modulate

the strength of this mechanism (Pal and Eltahir 2001), as

can the coupling of the lower free troposphere and PBL

(Margulis and Entekhabi 2001). In total, this mechanism

is expected to generate a positive precipitation–soil mois-

ture feedback. The second mechanism is associated with

triggering convection by raising the PBL height toward

the LFC over deep-PBL regions (e.g., the Sahel) (Gentine

et al. 2013b) or through induced local or mesoscale circu-

lations (Taylor et al. 2011, 2012). Since dry surfaces are

associated with flux partitioning favoring sensible heat

flux and increased buoyancy, this pathway corresponds

to a negative feedback of soil moisture on precipitation.

This is thought to occur mostly under hot, unstable

conditions (Westra et al. 2012), regions with an upper-

level moisture source (Findell and Eltahir 2003a), and

deep boundary layers (Gentine et al. 2013b).

b. Land–atmosphere coupling metrics

One of the key challenges in the study of land–

atmosphere coupling is the development of straight-

forward metrics for quantifying the strength of the

coupling in observations andmodels (Sun andWang 2012).

The Global Land–Atmosphere Coupling Experiment

(GLACE; Koster et al. 2004; Dirmeyer et al. 2006; Notaro

2008) introduced a well-known metric based on the

intra-ensemble spread of variance in interactive and

prescribed soil moisture simulations, although this

metric cannot be obtained directly from observations.

Another widely used approach involves the estimation

of recycling (Brubaker et al. 1993; Eltahir and Bras 1996;

Sch€ar et al. 1999; Dominguez et al. 2006; Dirmeyer and

Brubaker 2007), such as the fraction of recycled to total

precipitation occurring over a region, although such

estimates may depend on the details of the area and

scale considered and may be difficult to generalize (van

der Ent and Savenije 2011). Another approach consists

in the use of mixing diagrams (Berg and Stull 2004;

Santanello et al. 2005, 2007, 2009, 2011) indicating the

modification of the PBL by surface heating and moist-

ening, entrainment at the boundary layer top, and ad-

vection. Interesting new metrics have recently been

developed. For instance, Dirmeyer et al. (2006) use an

index of the sensitivity of surface fluxes to soil moisture

variations. In Mei and Wang (2012), the probability

density function of conditioned correlation between soil

moisture and subsequent precipitation or surface tem-

perature is defined as a metric for the coupling strength.

Wei and Dirmeyer (2012) quantify both locally and re-

motely the evapotranspiration–precipitation using a back-

trajectory method for water transport. In Zeng et al.

(2010), a new parameter G is proposed to estimate the

land–precipitation coupling strength based on the ratio

of the covariance between monthly or seasonal pre-

cipitation and evaporation anomalies over the variance

of precipitation anomalies.

Findell and Eltahir (2003a,b) developed a framework

for determining when land surface conditions are likely

to influence subsequent convection utilizing the con-

vective triggering potential (CTP) as a proxy for the

lower free troposphere stability and the low-level hu-

midity index (HIlow) as a proxy for the humidity deficit

of the low-level air. These variables have been used to

assess the large-scale potential for convective precip-

itation and to quantify the soil moisture–precipitation

feedback on a large scale (Findell et al. 2011; Tuinenburg

et al. 2011; Ferguson andWood2011).WhileCTP is related
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to the convective available potential energy (CAPE), its

restriction to the lower free troposphere is thought to

reflect the vertical environment with which the de-

veloping boundary layer initially interacts (Findell and

Eltahir 2003a,b). Findell et al. (2011) show that high

evaporative fraction (i.e., the fraction of available en-

ergy consumed as latent heat flux) enhances the proba-

bility of afternoon rainfall east of the Mississippi and in

Mexico during the summer months using the NARR

dataset. They further demonstrate that EF has a negli-

gible impact on the magnitude of a convective rainfall

event. To evaluate the change in the frequency and

quantity of convective rainfall induced by a change in

EF, Findell et al. (2011) introduced the triggering

feedback strength (TFS) and amplification feedback

strength (AFS) metrics. These metrics are based on

sensitivities to EF but are complex to estimate and may

be difficult to generalize. In particular, it might be dif-

ficult to introduce other potentially important factors in

the analysis since the estimation of the sensitivities using

more than three variables is technically challenging. It

will be seen in the following that SA offers a convenient

alternative from which more general relationships, un-

ambiguous sensitivities, and potential dependencies on

more variables can be derived. Furthermore, the SA

results will be shown to be consistent with the TFS and

AFS metrics.

c. Datasets

NARR assimilates atmospheric profiles (tempera-

ture, water vapor, wind) from rawinsondes and drop-

sondes, in situ measurements, and satellite observations.

NARR offers two advantages over earlier global re-

analysis datasets: finer resolution (approximately 30-km

grid spacing) and the ingestion of hourly precipitation

and near-surface humidity. NARR has been shown to

be more reliable than many other reanalysis products

for hydrometeorological studies (Mesinger et al. 2006;

Mitchell et al. 2004). Twenty-five years of hourly data

are available from 1979 to 2003. Only June–August

(JJA) data are included in the evaluation of the feed-

back since convective rainfall and land–atmosphere

feedbacks are believed to be less important during

winter. The spatial domain of the analysis is North

America and Mexico; locations north of 508 latitude are
excluded because of the lack of hourly precipitation data

available for assimilation into the NARR (Findell et al.

2011).

Figure 1 depicts June 1979 means and standard de-

viations of CTP, HIlow, EF, and R (rainfall) maps. Let

us first consider the convective triggering potential

(CTP), defined by Findell and Eltahir (2003a) as the

area between the observed temperature profile and a

moist adiabat originating at the observed temperature

100 hPa above the surface and extending to 300 hPa

above the surface. When the lapse rate is close to dry

adiabatic, CTP is large and areas of high sensible heat

flux may have an advantage in triggering convection.

Smaller but still positive CTPmeans that the lapse rate is

closer to moist adiabatic, giving areas of high latent heat

flux a convective advantage. Negative CTP indicates

a temperature inversion that inhibits locally driven deep

convection over the land or mesoscale–synoptic in-

fluence on convection triggering. HIlow is the sum of the

dewpoint depression (T 2 Td, where T is air tempera-

ture and Td is dewpoint temperature) at 50 and 150 hPa

above the ground surface. Findell and Eltahir (2003a,b)

showed that when the atmosphere was excessively dry

(HIlow. 15K), rainfall in the model was prohibited by

the atmospheric conditions but when this deficit was

small (,5K), the atmosphere was so close to saturation

that moist convection becomes likely over any surface.

Flux partitioning at the land surface is defined using EF,

which is reasonably constant during daylight hours

(Crago 1996; Crago and Brutsaert 1996; Gentine et al.

2011, 2007). Findell and Eltahir (2003b) showed that in

drier atmospheres high sensible heat flux is a good

trigger of convection while in more humid atmospheres

large contributions of humidity from the land surface

was a more effective trigger. Findell et al. (2011) and

Berg et al. (2013) extended this result to show that the

impact of flux partitioning is largely felt in the triggering

of rainfall events rather than in an enhancement of

rainfall amounts once convection is initiated. In this

study, CTP andHIlow are evaluated using the 6 to 9 a.m.

average, EF is evaluated from 9 a.m. to noon, and rainfall

is considered from noon to 6 p.m., following Findell et al.

(2011). It should be noted that in the mean CTP or STD

of HIlow maps of Fig. 1, an artifact longitudinal anomaly

can be seen at2112.58W.This is due to the adjustment of

3-hourly data to local times. In the central portion of each

3-h time zone block the morning window is indeed 6–9

a.m., while in the western third themorning window is 1 h

earlier (5–8 a.m.), and in the eastern third the morning

window is 1 h later (7–10 a.m.). This means that at the

longitudinal interfaces between 3-h time blocks, the 7–10

a.m. section from one block is adjacent to the 5–8 a.m.

section from another. This produces the artifact seen

at 2112.58W.

Some filtering of the dataset is needed in order to

focus the analysis toward local processes and avoid, as

much as possible, the effects of the large-scale circula-

tion. Our filtering follows Findell et al. (2011). First, only

daily data points without early morning rainfall between

6 a.m. and noon are considered, in order to limit

the impact of long duration rainfall events. Second, data
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points with negative CTP are excluded because they are

too stable to support locally driven convection, indicating

that any afternoon precipitation on these days is likely re-

lated to synoptic-scale systems and not to local conditions.

In addition to the complete CONUS domain (referred

to hereafter as the Total domain), two regional domains

are also considered: Florida 5 258–318N and 848–808W
andMissouri5 368–408Nand948–908W.These two regions

FIG. 1. (top to bottom) The CTP,HIlow, EF, andR (left) monthly average and (right) standard deviation for June 1979. The quantity EF is

defined as lE/(H 1 lE), where lE 5 evaporative heat flux and H 5 sensible heat flux.
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are very different in their climatological behavior and

demonstrate the limitations of the global analysis ap-

plied to the total domain. While Florida has its peak

rainfall during the late afternoon hours (4–6 p.m.), much

of theMidwestern CONUS has a nocturnal maximum of

rainfall (see, e.g., Fig. 3 in Ruane 2010; see also Lee et al.

2008; Dai et al. 1999; Jiang et al. 2006). Factors con-

tributing to this nocturnal maximum include the Rocky

Mountains acting as an elevated heat source, absorbing

radiation and initiating ascent over the mountains, and

large-scale descent downwind over the Great Plains

during the afternoon (Ruane 2010). Convective systems

generated over the Rockies subsequently propagate

eastward, allowing CAPE built up during the day to be

released during the night (Dai et al. 1999; Jiang et al.

2006). Our global analysis considers only three input

variables (EF, CTP, and HIlow) and as such does not

explicitly account for dynamical suppression of locally

driven afternoon convection over the Great Plains via

forced large-scale descent. However, this suppression

may in fact diminish the relationship between surface

fluxes and afternoon rainfall that is captured in much of

the rest of the domain, most notably Florida.

d. Simple linear correlation analysis

Table 1 summarizes the correlation among predictors

(CTP,HIlow, andEF) and rainfallR for the three spatial

domains: Total, Florida, and Missouri. In the Total do-

main, CTP and HIlow are highly correlated to each

other (0.67) as low-level moisture impacts the convec-

tive instability, EF appears to be slightly less dependent

onCTP andHIlow (20.41 and20.47). None of the three

input variables is strongly correlated to R (maximum is

20.23 for HIlow and R). As a consequence, the rele-

vance of these variables to the retrieval of rainfall in-

formation is limited. The correlations in the Florida

domain are similar in pattern but their magnitudes are

lower. For the Missouri domain, the correlations are

even lower (e.g., 0.3 for CTP and HIlow instead of 0.67);

this means that the system described by CTP, HIlow,

and EF is less constrained and that other factors are

acting in this region. The information provided by CTP,

HIlow, and EF is not sufficient to characterize directly

the rainfall R in any of the regions.

First attempts to retrieve rainfall from the (CTP,

HIlow, EF) combined information have been made us-

ing a metamodel. The results (not shown) are poor: the

percentage of variance of R that is explained by either

a linear regression or neural network is equal to 10%

and 13%, respectively. The standard deviation of neural

network retrieval errors for R is about 1.28mm, almost

as large at the natural variability of R, equal to 1.37mm.

The difficulty to relate this raw data (CTP, HIlow, EF)

to R is not a surprise and illustrates well the need to

perform the sensitivity analysis on statistical properties

of rainfall (i.e., average intensity and frequency) instead

of rainfall itself. This is the objective of the following

section.

e. Binning and rainfall intensity and frequency
statistics

In this section, some tests are performed to capture

the statistical nature of the (CTP, HIlow, EF) to R re-

lationship. The goal of SA will be to reproduce this re-

lationship. The variables CTP, HIlow, and EF are first

binned. CTP variability range is divided into six bins: 0#

CTP, 100; 100# CTP, 200; 200# CTP, 300; 300#

CTP, 400; 400# CTP, 500; and 500# CTP. HIlow is

divided into seven bins: HIlow , 5; 5 # HIlow , 10;

10 # HIlow , 15; 15 # HIlow , 30; 30 # HIlow , 40;

40#HIlow, 50; and 50#HIlow. The binning of EF is

performed using 10 bins of 10% from 0% to 100%.

The expected (mean) rainfall intensity, E(R), and

probability, P(R), are estimated for each of the afore-

mentioned bins. A point is considered to be rainy when

R. 1mm. The expected rain intensityE(R) is computed

only for data points with rain, so the notation should be

[E(R), R $1mm] but E(R) is used here for clarity of

presentation. By computing these statistics, E(R) and

P(R), for each bin, a large portion of the CTP, HIlow,

and EF variability is suppressed. The intrabin variability

is not assessed, as only the interbin variability is ana-

lyzed in the following. The former can be the result of

many factors that are not included in the analysis; for

example, not all the geophysical variables involved in

the processes have been accounted for or some spatio-

temporal integration mechanisms are not considered.

Figure 2 depicts the expectation and probability sta-

tistics for the Total domain. The general trend for

rainfall intensity E(R) (upper row) is positive as EF

TABLE 1. Correlation between predictors (CTP, HIlow, and EF)

and rainfall R.

HIlow EF R

Total

CTP 0.6739 60.0003 20.4120 60.0005 20.1360 60.0005

HIlow 20.4665 60.0004 20.2289 60.0005

EF 0.1711 60.0005

Florida

CTP 0.5547 60.0036 20.0982 60.0052 20.0878 60.0052

HIlow 20.2217 60.0050 20.1714 60.0051

EF 0.1365 60.0051

Missouri

CTP 0.3008 60.0039 20.0996 60.0043 0.0116 60.0043

HIlow 20.1251 60.0043 20.1466 60.0043

EF 0.0507 60.0043
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increases. The increase of E(R) with EF can be as large

as 1mm, or up to a 30% increase in expected rainfall

intensity. It should be noted that the pattern is noisy,

especially in the limits of the binning domain, and the

estimation in some bins can suffer from limited sampling

in the bin. However, the general positive trend with EF

is robust. The impact of EF is maximal for low HIlow

and CTP levels. For the frequency (lower row of Fig. 2)

the general pattern is less noisy. There is again a positive

trend, with P(R) increasing when EF goes from low to

medium values. Only low values of HIlow are impacted,

especially for low CTP.

Figures 3 and 4 are analogous to Fig. 2 but for the

Florida andMissouri domains. Here the binning range is

smaller given the lower range of variability inherent in

the variables on more limited spatial scales. The be-

havior in the Florida domain is similar to the total do-

main but with stronger signatures in both E(R) and

P(R). Note that E(R) can go from 1 to 5mm due to a

change in EF and P(R) can be increased by 20% when

EF increases by 10%. These results are compatible with

Findell et al.’s (2011) results. On the other hand, in the

Missouri domain, the behavior is different. The rainfall

intensity E(R) has a small increase from low to medium

EF but the pattern is very noisy and the amplitude of

changes is limited. Moreover, P(R) does not seem to be

related to CTP, HIlow, or EF. This is consistent with the

information provided earlier about large-scale after-

noon descent in this region largely suppressing locally

driven convection.

Table 2 presents the correlations and their un-

certainties for the binned predictors (CTP, HIlow, and

EF) and the rainfall expected intensity E(R) and fre-

quency P(R) for the Total, Florida, and Missouri do-

mains. As the structure of correlations in this table is

very similar for the Total and the Florida domains, let us

first consider these two regions. Among the three pre-

dictors, HIlow provides the best information on rainfall

intensity (20.57 and 20.52). Over the ocean, it is well

known that lower-level (ABL) humidity is a good pre-

dictor of convective triggering (Muller et al. 2009) but

overall, to our knowledge, the link has not been as clear.

For the rainfall frequency, again, HIlow is the more

informative: 20.67 and 20.72. These correlations are

negative, so a decrease of HIlow (the low-level humidity

increases) tends to increase the intensity and frequency

of rainfall. EF has a significant correlation (0.32 and

0.35) for rainfall frequency only, not intensity. The

correlation is positive, which means that when EF in-

creases (i.e., wetter soils and more evaporation) the

FIG. 2. (top) Total domain expected rainfallE(R) (mm) with respect to binned CTP and HIlow for (left to right) EF5 low (5%), medium

(45%), and high (75%). (bottom) As in top, but for rainfall probability P(R) (values between 0 and 1).
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afternoon rainfall frequency increases but there is little

impact on rainfall intensity. When considered CTP

alone does not seem to provide any information on

rainfall. This table is consistent with the averaged maps

of Fig. 1.

For the Missouri domain, the correlation behavior is

distinct from either the Total or Florida values: E(R) is

highly correlated to EF (0.75), to CTP (0.69), and to

HIlow (0.38). Note that the correlation of E(R) with

HIlow is here positive, in contrast to the Total and

Florida domains. For the rainfall frequency P(R), the

correlations are rather different too: 0.62 with CTP and

EF and no correlation with EF. The strong connection

between CTP and rainfall in this domain may stem from

a relationship between large-scale atmospheric features

and the CTP’s characterization of low-level early-

morning atmospheric stability. This variable was not

designed to assess large-scale vertical motion descent,

but the positive correlations seen between CTP and

rainfall features in theMissouri region may indicate that

the two are in fact correlated.

It is important to note that even for the stronger of

these correlations [e.g., HIlow and P(R) correlated at

20.72 in Florida] the relationship is not very in-

formative: the percentage of variability of P(R) that can

be explained by HIlow alone is just 51%. So the forecast

of E(R) or P(R) is a true challenge. However, it will be

seen in the following that it is possible to obtain good

forecast ofE(R) andP(R), first, by using the interactions

between (CTP, HIlow, EF) and, second, by using non-

linear models instead of linear correlations.

It is clear from the analysis of this section that the

triggering of convection is not the same for the three

spatial domains considered in this paper. This confirms

the results in Figs. 2, 3, and 4. These differences in be-

havior mean that some other parameters are important

to describe rainfall. It is beyond the scope of this paper

to investigate which factors may account for these dif-

ferences, but we intend to pursue this in future work.

The main goal of the next section will be to define ge-

neric tools to estimate the sensitivities of the system

defined in the Total domain.

3. Results of the neural network sensitivity analysis

a. Neural network metamodel over the complete
domain

In this section, the analysis focus on the Total domain

and on the relationships defined in Fig. 2. Linear and

neural network (NN) models are used to represent the

relationships linking binned CTP, HIlow, and EF and

FIG. 3. As in Fig. 2, but for the Florida domain.
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afternoon rainfall, for both the expected intensity E(R)

and frequency P(R). The models have three inputs and

one output. Amodel is used for the retrieval ofE(R) and

another for P(R) (a simultaneous retrieval could also

have been performed using a single model) so a total

number of four models are tested. The two neural net-

works have been chosen with 10 neurons in the hidden

layer (see appendix). This is a reasonable compromise

providing a good approximation but not too many de-

grees of freedom in the metamodel. The training of the

FIG. 4. As in Fig. 2, but for the Missouri domain.

FIG. 5. Scatterplot of the NN retrieved vs target expected rainfall (left) intensity and (right) frequency. The

correlation and the R2 between retrievals and NARR targets are also indicated.
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four models uses the binned dataset of section 3e be-

cause E(R) and P(R) need to be estimated from binned

data.

Before defining and analyzing the full models, an in-

formation content analysis of the inputs with respect to

E(R) and P(R) can be performed using the metamodels.

The percentage of variance explained (R2) statistics

of the linear and neural network models are listed in

Table 3. This method can be used to define which input

variables are most related to rainfall by quantifying the

strength of each link, and measuring the information

synergy among the variables. An advantage of this ap-

proach is that there is no need for using normalization

coefficients in order to measure the significance of the

variables. A disadvantage is that if two input variables

are correlated, their combination may not improve

the results even if a causal link exists with the output.

Not surprisingly, the NN models outperform the linear

models. However, the linear and NN R2 are similar in

magnitude for individual inputs, except for the retrieval

of P(R) using HIlow. Thus, nonlinearity of the NN is

important not because of the nonlinear shape of the NN

but because of the interaction terms. For instance, the

retrieval of P(R) using (CTP, HIlow, EF) provides a

R2 5 0.71 for the linear model and 0.93 for the NN

model; P(R) is better retrieved than E(R) (R2 5 93%

compared to 70%). The strong agreement between

the data and NN forecast model indicates that rainfall

frequency is strongly related to the chosen predictors

(CTP, HIlow, and EF) when considering the Total do-

main, and that the binning of the predictors and the use

of the rainfall statistics instead of the raw rainfall is very

efficient (section 3e). The R2 statistics of Table 3 also

confirm the correlations of Table 2: for the character-

ization of E(R) and P(R), HIlow is most important,

followed by EF and then CTP.

FIG. 6. As in Fig. 2, but for (top) retrieved expected rainfall E(R) and retrieved rainfall probability. This figure is to be compared to real

data in Fig. 2.

TABLE 2. Correlation between predictors (CTP, HIlow, and EF)

and rainfall intensity E(R) and frequency P(R). The 95% confi-

dence interval is also on the right.

E(R) P(R)

Total

CTP 20.06 60.10 20.03 60.10

HIlow 20.57 60.07 20.67 60.06

EF 0.17 60.10 0.32 60.09

Florida

CTP 0.03 60.18 20.04 60.18

HIlow 20.52 60.15 20.72 60.10

EF 0.12 60.17 0.35 60.15

Missouri

CTP 0.69 60.07 0.62 60.08

HIlow 0.38 60.11 0.07 60.13

EF 0.75 60.05 0.62 60.08
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Figure 5 depicts the NN retrieval of the rainfall ex-

pected intensity (left) and frequency (right) against the

NARR target. The correlations are also indicated: 0.84

(R2 5 70%) for expected intensity and 0.96 (R2 593%)

for frequency of rainfall. The uncertainty for rainfall

intensity is larger for lower values. The rainfall fre-

quency model is in strong agreement with the data. This

figure yields interesting physical insights onto the trig-

gering and magnitude of rainfall. Based on those results,

the frequency of rainfall can be predicted in NARRwith

a high degree of confidence if (CTP, HI, EF) are known,

that is if we have information on the early morning

stability, boundary layer humidity, and surface energy

partitioning. On the other hand, the intensity of rainfall

is much less confidently predicted with this triplet and

additional information on the state of the atmosphere

would be needed.

The NN forecast of the intensity and frequency sta-

tistics based on CTP, HIlow, and EF over the total do-

main is illustrated in Fig. 6. This figure can be directly

compared to the original rainfall statistics in Fig. 2. It can

be noted that the patterns for the rainfall intensity E(R)

are smoother than the original data, but they retain the

same general behavior (i.e., increase of the expected

intensity with increasing EF). This smoothing was to be

expected: only 10 neurons are used in the hidden layer of

the NN in order to limit the number of degrees of

freedom in themodel. This has a smoothing effect that is

desirable in SA. The patterns of the rainfall frequency

P(R) are identical to the original patterns; they can

barely be distinguished with the NARR original data

(Fig. 2). This confirms that the NN metamodel f re-

produces very well the (CTP, HIlow, EF) to P(R) re-

lationship. The metamodel can therefore be used with

confidence to estimate the sensitivities of the system.

It should be mentioned that experiments have been

conducted to apply the Total domainmetamodel of Fig. 6

on the Florida and the Missouri domains. As expected,

the metamodel is not as good when applied to local

domains (not shown) because the general behavior of

Fig. 2 is not entirely consistent with the local behaviors

of Figs. 3 and 4. As mentioned earlier, additional in-

formation appears to be necessary on the Florida and

especially Missouri domains to characterize the differ-

ences of behavior described in sections 3d and 3e.

b. Sensitivities of the general metamodel

Since the NN metamodels are more accurate than the

linear models, they are chosen here to estimate the sen-

sitivities. Once the NN metamodels are trained to fore-

cast rainfall expected intensity and frequency, it is simple

to estimate the sensitivity of the outputs, E(R) or P(R),

with respect to the three inputs, CTP, HIlow, and EF:

SE(R)/CTP 5
›E(R)

›CTP
(CTP,HIlow,EF)

SE(R)/HIlow5
›E(R)

›HIlow
(CTP,HIlow,EF)

SE(R)/EF5
›E(R)

›EF
(CTP,HIlow,EF). (1)

Since the NN metamodels are relatively simple ana-

lytical functions, it is easy to obtain their analytical

derivation. Similar formulas can be used to obtain

rainfall probability P(R) sensitivities instead ofE(R) in

Eqs. (1). To better understand these sensitivities, nor-

malizations are often used. This normalization can be

quite complex, using input or output standard de-

viation, using global or pixel-level statistics, and the

resulting normalized sensitivities can change signifi-

cantly. Normalized sensitivities can be handy when

comparing the relative strength of the sensitivities, but

this easier comparison means that the sensitivities lose

their physical unit and are highly dependent on the

chosen normalization factor.

To represent the full coverage of these sensitivities, in

particular the extreme cases, histograms of ‘‘sensitivity

impact’’ have been estimated (Fig. 7). These sensitivity

impacts are the raw sensitivities multiplied by a ‘‘charac-

teristic’’ increment u of its inputs: uCTP 3 ›P(R)/›CTP,

for example. The characteristic increments have been

chosen as uCTP 51100 J kg21, uHIlow 515K, and uEF5
110% (to avoid confusion, these characteristic incre-

ments are different than the binning steps). The statistics

of Fig. 8 have been estimated for the full time record

(1979–2003) and for the whole spatial domain.

It can be noted that a change of any of the three

variables has a limited impact onE(R): only a fraction of

precipitation results from these characteristic increases

of CTP, HIlow, or EF. This is consistent with Figs. 2 and

6 where the dependency of E(R) horizontally (i.e., for

TABLE 3. Values of R2, the percentage of variance explained by

the metamodel forecast [linear regression (LIN) or neural network

(NN)], for the Total domain for the retrieval of rainfall intensity

E(R) and probability P(R) when different combination of inputs

are used.

E(R) P(R)

Inputs LIN NN LIN NN

CTP 0.00 0.02 0.00 0.00

HIlow 0.32 0.33 0.45 0.70

EF 0.03 0.06 0.10 0.14

CTP 1 HIlow 0.32 0.45 0.45 0.75

CTP 1 EF 0.03 0.14 0.10 0.15

HIlow 1 EF 0.34 0.52 0.53 0.89

CTP 1 HIlow 1 EF 0.34 0.70 0.71 0.93
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CTP) is very weak. The sensitivity of E(R) to HIlow is

most of the time negative, demonstrating that the be-

havior in the Missouri region is indeed anomalous. The

dependency of E(R) to EF is also weak, it is mainly

positive but its impact is only significant for lower HIlow

values (see Figs. 2 and 6). Significant increase of EF

would be required to obtain a 0.5-mm increase of ex-

pected rainfall E(R).

The top three plots in Fig. 7 show the sensitivity im-

pacts of E(R) with respect to each of the three input

variables (CTP, HIlow, and EF). The range of the x axis

(20.4 to 0.4mm) indicates that each of the input variables

has a limited impact on the expected amount of rainfall

during a storm event. The histograms all span positive

and negative values, indicating that the chosen charac-

teristic increase in each of the three variables can lead to

an increase or a decrease in E(R), although the HIlow

impacts are typically negative and the EF impacts are

almost all positive. Despite the dominantly positive his-

togram, the small values indicate that very large EF

changes would be required to produce just a 0.5-mm in-

crease of expected rainfall. This is consistent with the

largely negligible values of the amplification feedback

strength found in Findell et al. (2011).

It is important to note that the ranges of the sensi-

tivities in Fig. 7 are dependent on the chosen increments

uCTP, uHIlow, and uEF. In the right column of Fig. 1, it can

be seen that the standard deviation of variability in one

pixel can be as large as 250 J kg21 for CTP, 16K for

HIlow, and 25% for EF. This indicates that the charac-

teristic perturbations used in Fig. 7 are quite reasonable

and the sensitivity impact can be multiplied by 2 or 3 for

extreme perturbations.

The sensitivity of P(R) to CTP, HIlow, and EF ap-

pears more substantial (as shown earlier; see Fig. 5). The

impact of CTP can be either positive or negative and it

can have an impact of up to 10% on P(R). HIlow im-

pacts are almost always negative and can reduceP(R) by

more than 20%. The sensitivity to EF is always positive

and an increase of 10% of EF can lead to an increase

of up to 5% in P(R). This relationship between EF and

P(R) is consistent with the TFS results of Findell et al.

(2011), although the magnitude of the impact is smaller

with this characteristic EF perturbation than they saw

when scaling their locally derived derivative with the

local standard deviation of EF.

It is important to recognize that the sensitivities in

Eq. (1) are partial derivatives. In general, increments in

CTP, HIlow, and EF are linked and the sensitivities can

add to or compensate each other. As a consequence, it is

not possible to directly compare ›P(R)/›EF (i.e., real

partial derivative) and DP(R)/DEF (i.e., ratio of

increments).

The spatial structures of these sensitivities are illus-

trated in Fig. 8. In each pixel, an averaged sensitivity has

been estimated for the entire available period 1979–

2003. This averaging has the tendency of limiting ex-

treme cases so the ranges of variability in these maps are

lower than for unscaled versions of the histograms of

Fig. 7 but the spatial patterns obtained are relatively

stable over time (not shown). The left column presents

sensitivities on rainfall expected intensity,E(R), and the

right column for rainfall frequency,P(R). The sensitivity

of E(R) and P(R) to CTP, HIlow, and EF can vary sig-

nificantly from one location to another.

FIG. 7. Histogram of the ‘‘sensitivity impact’’ expressed as (top

three panels) the expected rainfall E(R) and (bottom three panels)

rainfall frequency P(R) sensitivities to (top to bottom) CTP,

HIlow, and EF when multiplied by a characteristic input pertur-

bation uCTP 5 1100 J kg21, uHIlow 5 15K, and uEF 5 110%.
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Let us first consider the rainfall intensity. Note that

E(R) was not correlated to CTP (Table 3) but the sen-

sitivity appears to be significant in some of the regions.

Atmospheric instability (as assessed by CTP) negatively

affects the convective rainfall intensity over most of the

domain, with the strongest impact in the Rocky Moun-

tains and, to a lesser degree, Florida. The strongest lin-

ear correlation was with HIlow (20.6); the sensitivities

in Fig. 8 are consistent with that negative correlation,

showing mostly negative sensitivities, especially in the

East and Mexico. The sensitivity with EF is really bi-

modal, with a positive sensitivity in Mexico, the south-

eastern United States, the northwestern United States,

and along a north–south band through the central

United States, and a negative sensitivity in most of the

western United States and in the region south of the

Great Lakes. The feedback seen with soil moisture is

going to be a composite effect of both the sensitivities to

EF, as well as the soil moisture–EF relationship.

The average sensitivity maps for P(R) are represented

in the right column of Fig. 8. Again, the correlation be-

tween P(R) and CTP was negligible (Table 3) but the

sensitivity is largely positive, in particular in the western

half of the domain. This means that an increase in CTP

typically increase rainfall frequency, with a bigger impact

on Mexico and the western United States. This is consis-

tent with the very definition of the CTP as an indicator of

the convective instability. Indeed if the source of con-

vection (plumes) originates the near surface, increasing

instability will increase the likelihood of precipitation

triggering. The effect is clearly nonlinear since it is ex-

pected that precipitation triggering in dryer atmosphere

(West Coast) is less sensitive to an increase in atmospheric

instability since in general the atmosphere is relatively

FIG. 8. Averaged rainfall (left) expected intensity E(R), and (right) frequency P(R) sensitivities for (top to bottom) CTP, HIlow, and EF

[Eq. (1)]. The statistics were obtained using the full 1979–2003 dataset.
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stable. The stronger linear correlation inputwithP(R) was

HIlow (20.67). This is consistent with the sensitivity map

that includes only negative values, with very important

magnitudes over the easternUnited States andMexico. A

change in the lower tropospheric (boundary layer) hu-

midity always leads to an increase in rainfall likelihood.

This is consistent with recent findings of boundary layer

control on the triggering of deep convection over the

ocean (Peters and Neelin 2006; Muller et al. 2009).

The two maps at the bottom of Fig. 8 [sensitivities of

E(R) andP(R) to EF] are similar to Fig. 1 in Findell et al.

(2011) representing the sensitivity of convective trig-

gering and rainfall depth to evaporative fraction. We

obtain a similar general pattern for P(R) but with much

stronger positive feedback over the eastern United

States andMexico, and less over Florida. This highlights

the differences discussed earlier raised by the grid cell

approach of Findell et al. (2011) compared to the global

approach used here. For E(R), the sensitivities obtained

in our paper seem to be less significant but again with

a similar general spatial pattern.

c. Sensitivity-based regimes of land–atmosphere
interactions

The situation dependency of the sensitivities makes the

analysis more complex. To facilitate the interpretation

of the land–atmosphere coupling, it is therefore useful to

use a tool to synthesize results. To that end, we apply

cluster analysis to sort the sensitivity data into regimes.

These regimes are constructed to represent, as much as

possible, the variability in the dataset. In this section,

sensitivity-based regimes are obtained using theK-means

algorithm on the sensitivities ofP(R) to CTP, HIlow, and

EF. The rainfall frequency is preferred to the expected

rainfall intensity because the metamodel is more reliable

for P(R) (section 4a). The regimes are entirely defined by

the three sensitivities (Fig. 8, right column); the absolute

values of CTP, HIlow, EF, or P(R) are not used to obtain

them in the clustering process. The number of regimes,

five, is chosen a priori.

The five regimes (Fig. 9) show a regional pattern remi-

niscent of the well-known map of dry versus wet soil ad-

vantage derived by Findell andEltahir (2003a).While the

choice of five clusters is subjective, an encouraging result

is that these regimes are very stable when the number of

clusters is increased: when adding regimes from one to

five (not shown), the surface classification is described in

better detail, with more transition areas, but the general

structure remains stable, in particular with the eastern

United States plus Mexico versus western United States

contrast. This is a very good indicator of the robustness of

the regimes. Furthermore, the clustering in Fig. 9 has

been performed using averaged sensitivities (over 1979–

2003) but when tested on daily values the spatial struc-

tures are again very stable.

The pattern of the five regimes in Fig. 9 closely re-

sembles the pattern of EF sensitivity shown in the bot-

tom right panel of Fig. 8. This indicates that the EF

sensitivity is the dominant forcing determining the re-

gimes. Additionally, the clustering algorithm orders the

five regimes from weakest to strongest EF sensitivity

(Table 4), again indicating the importance of this vari-

able relative to the other two. Comparison of the rela-

tive importance of the three calculated sensitivities can

be attempted in a variety of ways, each with its own

strengths and weaknesses. The values of the regime-

mean sensitivities are provided in Table 4 both in terms

of nonnormalized sensitivities and in terms of impact

FIG. 9. Maps of land–atmosphere regimes based on the whole

1979–2003 series when five classes are used. From dark blue to

dark red: 1) atmospherically controlled, 2) atmospheric1 low-level

humidity dependency, 3) low-level humidity sensitivity regime,

4) surface evaporative fraction 1 low-level humidity controlled,

and 5) atmospheric 1 surface evaporative fraction dependency.

TABLE 4. P(R) sensitivity-based regimes.

›P(R)

›CTP

›P(R)

›HIlow

›P(R)

›EF
uCTP

›P(R)

›CTP
uHIlow

›P(R)

›HIlow
uEF

›P(R)

›EF

No. Color (% J21 kg) (% K21) (% %21) (%) (%) (%)

1 Dark blue 0.040 20.793 0.112 4.01 23.96 1.12

2 Light blue 0.022 21.254 0.136 2.20 26.27 1.36

3 Green 20.007 21.540 0.182 20.79 27.70 1.82

4 Orange 0.013 21.616 0.245 1.37 28.08 2.45

5 Dark red 0.031 21.313 0.271 3.11 26.56 2.71
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sensitivities (partial derivative multiplied by a charac-

teristic increment uCTP, uHIlow, and uEF) as in Fig. 7. The

global scaling approach of Table 4 should be interpreted

with caution, keeping in mind the local information on

the mean and variability of each variable provided in

Fig. 1. For example, the characteristic increment of 5K

for uHIlow is about 1/3 of the standard deviation of HIlow

in the western part of the domain, but more than twice

the standard deviation of HIlow in much of Mexico and

the southeastern United States (Fig. 1d). A uEF value of

10%, on the other hand, is relatively close to the stan-

dard deviation of EF in all but the central swath of the

domain. This means that the scaled columns of Table 4

will give greater weight to HIlow than to EF in Mexico

and the southeastern United States. Additionally, given

that the mean HIlow is relatively small in much of the

domain (less than 10K in Mexico and the entire eastern

half of the domain) and is bounded by zero, distributions

of HIlow for each grid cell are necessarily highly posi-

tively skewed, with long positive tails. The variability of

highly skewed distributions is not appropriately cap-

tured by the standard deviation, which tends to be

strongly impacted by these long tails. Thus, even Fig. 1d

likely overstates the local characteristic variability of

HIlow in much of the domain, and this further exacer-

bates the excess weighting of HIlow relative to EF in the

scaled portion of Table 4. Nevertheless, Table 4 pro-

vides useful insights into the characteristics of the five

regimes determined from the clustering algorithm.

The two western regimes (dark blue and light blue)

are both characterized by aweak positive dependence of

P(R) on EF, by a positive dependence of P(R) on CTP

that is stronger than in other domains, and by a negative

dependence of P(R) on HIlow that is weaker than that

shown in other domains. The far western regime (dark

blue) shows stronger dependence onCTP. In this region,

rainfall is mostly atmospherically controlled while the

transition regime running north–south through the

center of CONUS (light blue) shows stronger de-

pendence on HIlow. Convective rainfall is therefore

determined by the stability and lower surface humidity.

The three other regimes occupy Mexico and the eastern

half of the domain. They all show negative relationships

between P(R) and HIlow (i.e., increased low-level hu-

midity increases rainfall probability) and positive re-

lationships between P(R) and EF that are stronger than

in the two western regimes. Given the difficulties dis-

cussed above regarding the different local variabilities

and means of both EF and HIlow, assessing their rela-

tive importance is not straightforward; clearly both at-

mospheric humidity and surface flux partitioning are

important players in determining the probability of

rainfall in these three regimes. The largest difference

between these three regimes is in the response to CTP:

the green regime in the eastern United States has a very

weak negative dependence between P(R) and CTP,

while the orange and dark red regimes have stronger

positive P(R)–CTP relationships.

Comparing the regimes of Fig. 9 with the mean vari-

able states shown in Fig. 1 is also instructive. The strong,

positive P(R)–CTP relationships in the orange and dark

red regimes are associated with mean CTP values near

zero. The green regime, on the other hand, has mean

CTP values around 200 J kg21, but relatively small var-

iability in CTP. One can also see the imprint of the mean

HIlow and mean EF patterns on the regime map of

Fig. 9: the regimes with relatively high mean EF also

tend to have high sensitivity of P(R) to variations in EF.

This is consistent with the results of Findell et al. (2011).

While we have employed clustering to interpret dif-

ferences in rainfall sensitivity in NARR, we note its

potential applicability as a metric for model intercom-

parison and validation. The frequencies of occurrence of

these regimes could be estimated in model outputs the

potential differences could be measured. New regimes

could also be estimated in model outputs and the two

sets of regimes could be used compared.

4. Summary and conclusions

In this study, the relevance of three factors—evaporative

fraction, convective triggering potential, and low-level hu-

midity deficit—to afternoon convective rainfall intensity

and frequency has been evaluated. It is shown that by

binning these on three variables, it is possible to charac-

terize the rainfall frequency and, to a lesser extent, the

rainfall intensity.Wehave shown that it is better to perform

the analysis using statistical properties of the rainfall (i.e.,

intensity expectation and frequency of occurrence) rather

than on the raw rainfall values. This means that the process

analyzed here is statistical in nature, which could aid in the

development of new statistical (not deterministic) param-

eterizations in climate models (Palmer 2012).

Differences of behavior were found for the total (i.e.,

CONUS and Mexico) domain as well as the Florida

andMissouri spatial domains. In particular, the sensitivity

of convection to EF is high over Florida but equal to zero

over Missouri. To fully capture the local behaviors within

the framework of the full-domain analysis, additional in-

formation (e.g., vertical velocity) appears necessary.

The rainfall frequency can be highly controlled by the

EF in some regions such as Florida and Mexico, con-

firming previous results from Findell et al. (2011), al-

though the strength of the signal Findell et al. (2011)

found in Florida was not matched in this analysis be-

cause the response of rainfall to EF described by the
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neural network is informed by data from all grid points

in the domain. The very strong dP/dEF sensitivity found

in Findell et al. (2011) and Berg et al. (2013) is thus

muted by the domain-wide analysis performed here.

Applying K-means clustering to the sensitivities of

convective frequency and intensity to CTP, HIlow, and

EF over the total domain, we found a gradient of land–

atmosphere coupling regimes over the continental United

States. Five of these regimes were isolated and described;

they are characterized by the convection sensitivity to

lower-atmosphere stability, low-level humidity, and sur-

face evaporative fraction. Furthermore, it was shown that

a reliable statistical model based on neural networks can

be used to represent the general relationships among

these variables.

The sensitivity analysis (SA) approach used in this

paper can be very valuable for climate studies: a simple

statistical metamodel can be used to mimic the behavior

of a complex climate system such as convection over

land. It was shown that the nonlinearity of themodel was

essential in order to utilize interaction terms among the

inputs. This metamodel can be used to 1) better under-

stand the climate processes, 2) estimate the sensitivities

of the system, and 3) develop process-oriented metrics

to validate climate models against observations. These

tools can facilitate model development because the

emphasis is on the processes, not mean values of some

variables. New models could become more stable,

strengthening climate predictions.

The SA approach has multiple advantages:

d The analysis of the system is trulymultivariate, meaning

that the obtained sensitivities are true partial derivatives

of the system (not, as is often the case in climate studies,

increments of variables that would include the pertur-

bation of all the system inputs).
d Because of the nonlinearity of the metamodel, the

sensitivities that are obtained are state dependent

(e.g., the obtained sensitivities are not the same over

dry and wet environments).
d The SA can be used to quantify the importance for

a process of many inputs; this allows identification of

the most important factors in the climate system.
d SA can use observations or model outputs, which

means that pertinent process-related metrics can be

defined.
d Classical sensitivity estimation approaches used in

climate studies handle well two variables problems,

three at the best (Findell et al. 2011), but they could

hardly be generalized to problems involving more

variables. This would not be an issue for SA.
d The tools used in this study are conceptually very sim-

ple and easy to implement in practice. Furthermore, SA

is much more generic and can be used in a straight-

forward way with other problems, whereas other ap-

proaches are dedicated to a very specific problem, such

as in Findell et al. (2011).

Future directions for this work are numerous. First,

other variables could be introduced in our analysis of the

convection over CONUS. It is clear from the analysis

that the combination of CTP, HIlow, and EF only is

insufficient to fully characterize the intensity and trig-

gering of convection. The tools developed in this paper

can efficiently to determine the other important pa-

rameters controlling the convection over land. While

there are potentially many factors controlling deep

convection over land, as first steps, we intend to in-

troduce some measures related to vertical velocity, the

vertical structures of thermodynamic profiles, and bound-

ary layer properties. The analysis could also use cloud

fraction instead of rainfall.

It would be interesting to perform this analysis at

a global scale, in order to study the prevalence of sen-

sitivities identified for the North American domain or

whether distinct sensitivities appear in different regions.

Of course, to do so necessitates the use of datasets

covering areas beyond North America.

The results obtained in this paper are based on the

NARR reanalysis. It would be worthwhile to apply the

methodology described here to additional datasets in

order to assess how generalizable the finds may be. They

could potentially differ for another model or pure ob-

servations and this methodology can be used to compare

the sensitivities obtained for each one. This is very in-

teresting to intercompare processes and facilitate model

development.

An underlying motivation for this study was the de-

velopment of physically based, process-oriented metrics

of land–atmosphere coupling (and more generally,

linkages in the climate system). The nonlinear, multi-

variate, state-dependent sensitivities estimated here

may be useful for stimulating development of simplified

metrics that can be readily applied across models or

observations. Of course, it should be noted that the

metamodel is fundamentally a statistical construct

trained on a dataset. In fact, metamodels typically assess

relationships as correlative rather than causal. For ex-

ample, it is possible that the statistical link (or correla-

tion) that is observed is related to hidden factors not

considered in the analysis. To avoid such indirect cor-

relations and obtain reliable causality links in the cli-

mate system, it may be possible to employ causality

theory (Pearl 2009). This theory uses modern statistics

and probability to define models (e.g., graph, causal,

structural, and counterfactual models) and causation
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inference to analyze relationships between system con-

stituent variables. Future work will evaluate the appli-

cability of causal approaches to the climate system.

Acknowledgments. We thank Bill Rossow for inter-

esting discussion about climate sensitivities, nonlinear

systems, metrics, and feedback processes.Wewould like

to than the three anonymous referees for their very im-

portant contribution in the improvement of thismanuscript.

APPENDIX

Method Overview

a. The concept of metrics

In this paper, the term ‘‘metric’’ represents a tool that

measures some generalized distance d between a pair of

datasetsD1 andD2, d(D1,D2). In addition to quantifying

similarities or differences among datasets, metrics can

be used to estimate a posteriori values of model pa-

rameters needed to bring a model in closer agreement

with an observational target and to provide weightings

for members in an ensemble of model runs. Simple

metrics that facilitate understanding of the similarities

and differences between two datasets are especially

desirable. Much recent effort has been devoted to de-

fining metrics for diagnosis of observed climate system

processes and their evaluation and validation in models

(Luo et al. 2012; van Herrwaarden et al. 2009).

Simple correlation can be used as a metric but the

concept of metrics is more general. Correlation provides

only the statistical link between two variables, and it is

often a linear measure (although nonlinear correlation

measures have been proposed). In this paper, the sen-

sitivities that we derive are nonlinear (i.e., state depen-

dent) and they involve simultaneously all the variables

of interest.

b. Sensitivity analysis

While many approaches exist for analyzing relation-

ships between two variables, a and b, here we define

sensitivity in terms of first partial derivatives ›b/›a.

Frequently in climate studies, the sensitivities ›b/›a are

approximated using spatial and/or temporal increments

of a and b: increments Da and Db are obtained from

sampling two states of the climate system and the sen-

sitivity is given by the ratio Da/Db.
Because the ratio Da/Db is obtained by sampling two

states of a model (or observations), the derived sensi-

tivities are implicitly state dependent. Moreover, the

incremental approach may be too limited because it

relates a and b, without any consideration of the other

variables in the system. For example, the presence of

feedbacks may complicate the interpretation of in-

cremental sensitivities [see, e.g., van Herrwaarden et al.

(2009), where the analysis of the land surface and con-

vective clouds interaction has to take into account the

land–atmosphere feedback with the influence of dry-

air entrainment]. An alternative approach, though one

feasible only with models, involves directly perturbing

the forcing applied to amodel (e.g., changing top-of-the-

atmosphere solar radiation or imposing sea surface

temperature perturbations). Synthetic experiments on

soil moisture have been conducted by switching off the

soil moisture dynamics (e.g., in GLACE) (Koster et al.

2004, 2006). The two states of the system permit estima-

tion of Da and Db in order to obtain the sensitivity Da/Db.
However, this approach may prove computationally ex-

pensive, especially in the context of model intercom-

parisons, and cannot be replicated with observations.

Ideally, sensitivity estimates should be robust to

strong interactions between variables, nonlinearities

including threshold behavior or saturation effects, and

changes in background state or regime. To compare

sensitivities from model outputs and observations, the

method should be able to infer sensitivities from data-

sets from both model outputs and real observations. The

SA applied here uses a reduced complexity metamodel

that readily satisfies these criteria.

c. Metamodel

A metamodel f is designed to represent the original

system S (Marrel et al. 2008, 2011). More specifically, f is

a function that approximates with some desired level of

accuracy the outputs of S but at substantially reduced

computational cost (Kleijnen 2010; Simpson et al.

2001a,b; Storliea et al. 2009). Statistical models such as

neural networks have been shown to be complex enough

to represent complex climate processes; for example,

NNs are able to predict ENSO with accuracies compa-

rable to complex global climate models (Grieger and

Latif 1994; Tang et al. 2000). From f, it is possible to

estimate the sensitivities or uncertainties of S. Of greater

significance from a process perspective, f may elucidate

the predominant control variables in S as well as the

optimal combination of inputs for predicting a particular

output of S. On the other hand, because f can detect

noninfluential parameters, it may be used to simplify S.

Metamodels are also called response surfaces, simplified

models, emulators, proxy models, or surrogate models.

While f can be determined mathematically by nu-

merous techniques—for example, multiple linear re-

gressions, polynomial approximations, splines, additive

models, regression trees, support vector machines,

Gaussian processes (Volkova et al. 2008), or neural
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networks (Bishop 1996)—the choice of f is often dic-

tated by application constraints. Because physical pro-

cesses in climate may be nonlinear, the sensitivities of S

(or f) can be state dependent. For example, the sensi-

tivity of convection over land to soil moisture is not the

same for a dry or a wet atmosphere–soil (Findell and

Eltahir 2003a,b). To represent such state-dependent

sensitivities, it is necessary to implement a nonlinear

model. Furthermore, the uncertainties present in the

problem need to be taken into account. A distinction is

often made between ‘‘local’’ and ‘‘global’’ SA (Saltelli

et al. 2000): in the former, sensitivities are estimated for

a single input point, while in the latter all input points

are used together, under all conditions. In global anal-

yses, the sensitivities are normalized by the standard

deviation of the input and output variables and a so-

called factor of importance is determined by the nor-

malized sensitivity F5 (sa/sb)(›b/›a).

In an SA context, f is often calibrated using model

outputs but it can also be trained using a dataset of real

observations. This allows any diagnostic based on f to be

used as a metric for comparing two full systems S1 and S2.

d. Neural network analysis

In this paper, a neural network (NN) statistical model

is used to represent the multivariate and nonlinear re-

lationships in the climate system: b 5 NN(a). This ap-

proach was first proposed in Aires and Rossow (2003)

and has since been used, for example, in Chen et al.

(2003, 2006). NN techniques have proved very success-

ful in developing computationally efficient representa-

tion tools. The multilayered perceptron (MLP) model

(Rumelhart et al. 1986) is selected here. It is a nonlinear

mapping model: Given an input a, it provides a non-

linear output b. In this paper, an NN model with only

one hidden layer will be considered (Fig. A1). Each

layer in the NN is composed of individual neurons. A

neuron performs first a weighted average of its inputs

from the previous layer. The so-called synaptic weights

are assigned to each connection between two neurons.

These weights represent the NN parameters to be de-

fined during the training stage. The NN chosen in this

study is a fully connected MLP (i.e., every neuron has

a connection with all neurons of the previous layer).

Once this weighted average is performed, a nonlinear

sigmoid function is applied. The final output of a neuron

i is given by

bi 5s

 
�
N

j51

wj,iaj

!
,

where aj; j5 1, . . . ,N are theN inputs of the neuron,wj,i

is the synaptic weight between neuron j and i, and s is

a sigmoid function (Bishop 1996). Bias terms are also

present in this model, but they are suppressed here for

simplicity of presentation. TheMLPmodel is defined by

the number of input neurons (i.e., the size of the inputs,

number of channels), the number of outputs (i.e., the size

of the geophysical variables to retrieve), and the number

of neurons in the hidden layers that control the com-

plexity of themodel. A studymust be conducted to define

the optimal number of neurons in the hidden layer. A

balance needs to be found: too many free parameters in

the model can result in overlearning (over parameteri-

zation), leading to degraded generalization properties.

On the contrary, too few free parameters will yield under

parameterization and bias error of the model.

The neural network used in this study can be repre-

sented by a very simple function: b5 f(a)5W2s(W1a),

whereW1 (W2) is the matrix of weights from the input to

the hidden layer (from the hidden to the output layer).

The Jacobian of this function can be derived for any

input state a: ›f (b)/›a5W2s
0(W1a)W1, where s0 is the

derivative of the sigmoid function s. The state depen-

dency of this Jacobian results from the presence of the

sigmoid function s, otherwise the model would be linear

and the Jacobians would be constant for all states a. This

state dependency is important, as the NN is able to adapt

the sensitivity of its outputs based on the input state a. It

can use only one source of information when the other

sources are not pertinent or it can combine them in

a nonlinear way when necessary. Complex interactions

among the model inputs can be exploited by the NN.

The NN is trained to reproduce the behavior de-

scribed by a database of samples composed of inputs and

FIG. A1. Multilayered neural network perceptron (a) architecture

and (b) neuron i.
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their associated outputs, (ae, be), for e5 1, . . . ,N, withN

being the number of samples in the training database.

Provided that enough samples (i.e.,N) are available, any

continuous relationship, as complex as it is, can be rep-

resented by an MLP (Hornik et al. 1989). Furthermore,

a theorem of Cybenko (1989) shows that a two-hidden-

layer NN is able to represent any discontinuous func-

tion. A quality criterion that measures the discrepancies

between the NN outputs and the desired targets from

the learning dataset must be defined. In this paper, the

weighted least squares criterion is used. This quality

criterion is minimized during the learning of the NN.

The learning algorithm used to train the NN is the

classical ‘‘back propagation’’ algorithm. This optimiza-

tion technique has long proved efficient for such appli-

cations (Bishop 1996).

e. Local versus global analysis

The distinction is oftenmade between local and global

sensitivity analysis (Saltelli et al. 2000): in local analysis,

the sensitivities are estimated for a single input point.

Global analyses intend to provide a sensitivity analysis

at a global scale, for all types of situations, and taking

into account their probabilities. For example, in global

analyses, the sensitivities are normalized by the standard

deviation of the input and output variables and the so-

called factor of importance, which is given by the nor-

malized sensitivity F5 (sa/sb)(›b/›a).

To test if the analysis performed in this paper, tests

have been conducted at the CONUS, regional (i.e.,

Florida and Missouri), and pixel levels (not shown).

There are no significant differences among the regional

and pixel levels; this is to be expected since the two re-

gions are hydrologically homogeneous. In this paper, the

global sensitivities have been privileged because it al-

lows determining functional relationships that are in-

dependent of the location and that describe the full

range of behavior. However, the use of smaller regions

(and contrasting these results with the global results) can

help identify processes not included in the analysis but

that should be included in future applications. For in-

stance, the differences between Missouri and the global

results indicate that variables/processes are missing that

play an important role in this region, but not in the

Florida region. We suggest that a vertical velocity-type

term should be added to better characterize theMissouri

region.

f. Caveats

Several caveats on the applicability of SA and the

metamodel f should be noted. First, the number of

samples required may be very large. Thus, for sparsely

sampled high-dimensional spaces optimal sampling

strategies should be used (Aires and Prigent 2007; Paul

and Aires 2013, manuscript submitted to Quart. J. Roy.

Meteor. Soc.). In climate studies, especially those based

on models, this problem is rarely an issue since large

amounts of data are generally available. On the other

hand, it is often not possible to represent very precisely

the system S, as 1) some variables may not be available

or may not be defined a priori (however, exploratory

tools are available to investigate the more important

factors in a physical relationship); and 2) relationships

employed in fmay be too simplistic to represent complex

physical mechanisms integrated spatially and temporally.

However, the neural networkmodels used in this study are

universal approximation tools (Hornik et al. 1989, 1990;

Cybenko 1989) so this is not an issue here.

By pooling a large dataset together and using statistics

to find relationships among the variables, spurious cor-

relations can appear:

d They can result from pure coincidental events in two

variables; this is frequent when comparing not-long-

enough time series (in the time domain) or spatial

patterns.
d This can be related to ‘‘indirect correlations’’: for

example, a variable V1 impacts V2 that impacts itself

V3 (an indirect correlation betweenV1 andV3 can then

be measured); or a variableV1 impacts bothV2 andV3

(an indirect correlation exist between V2 and V3).

By increasing the number of data in the dataset, pooling

spatial and temporal samples together, the pure co-

incidental correlations are less probable. To avoid in-

direct correlations, other more sophisticated statistical

approaches need to be used. We mention in the perspec-

tives the ‘‘causality theory’’ that has been developed to

handle such difficulties, avoid spurious correlations, and

find relevant causal physical links among the variables.

This technique will be tested in a forthcoming study.
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