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Climatic precursors of autumn streamflow in the northeast
United States
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ABSTRACT: In this study, statistical linkages between autumn streamflow in the northeast United States and preceding
summer sea surface temperatures are developed to establish predictive potential for climate-informed seasonal streamflow
forecasts in this region. Predictor regions with physically plausible teleconnections to local streamflow are identified
and evaluated in a multivariate and nonlinear framework using local regression techniques. Three such regions are
identified, located in the Bering Sea, the tropical Pacific just west of Mexico, and the tropical Atlantic off the coast
of Africa. Asymmetries in each region’s univariate local regression result are apparent, and bivariate local regressions are
used to attribute these asymmetries to interactions with physical mechanisms associated with the other two regions, and
possibly other unaccounted for climatic predictors. A bivariate model including the tropical Pacific and tropical Atlantic
regions yields the strongest local regression result, explaining 0.68 of the interannual streamflow variability. An analogous
multivariate linear regression analysis is only able to explain 0.20 of the streamflow variability and thus the use of nonlinear
methods’ results in a marked improvement in streamflow simulation capability. Cross-validation considerably weakens the
streamflow forecasts using this model; however, forecast skill may improve with a longer period of record or the inclusion
of additional predictors. Copyright  2010 Royal Meteorological Society
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1. Introduction

Climate-informed seasonal streamflow forecasts are in-
creasingly recognized as a potentially viable information
source for reservoir operation and water allocation. In
developed regions where there is competing demand for
water, climate-based forecasts offer an objective means
of optimizing water allocation among stakeholders under
different stress conditions. For example, forecasts of
upcoming low-flow conditions will justify a reduction
in reservoir releases to protect against drought, whereas
forecasts of upcoming high-flow conditions will allow for
an increase in reservoir releases for ecological conserva-
tion and recreation. Such forecasts can provide equitable
benefits and justify sacrifices for all stakeholders.

Climate-based forecasts can be developed using either
dynamical or statistical methods. Dynamical stream-
flow forecasts typically use observations of current cli-
matic conditions, as input for large-scale general circula-
tion model (GCM) simulations of atmospheric processes
months into the future. The model output of future precip-
itation or runoff is then downscaled from GCM gridcell
scales to river basin scales, and translated to streamflow
via additional rainfall–runoff–streamflow conversions.
In contrast, statistical streamflow forecasts typically use
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observations of current climate as direct predictors of
future streamflow, based on historical lead–lag statistical
relationships between climate predictor and streamflow
values. Dynamical linkages are not used at any point, and
the historical relationship observed at seasonal timescales
is presumed to hold in the future as well.

Regardless of the specific method applied, effective
seasonal streamflow forecasts must have a strong physical
foundation for the translation of current climate infor-
mation into future streamflow magnitudes. For dynam-
ical methods, this means reliable GCM simulations,
downscaling techniques and rainfall–runoff–streamflow
conversions for the specific region under considera-
tion. For statistical methods, this means strong, robust,
and physically justifiable statistical relationships between
remote climate predictors and local streamflow pre-
dictands. The objective of this study is to establish
such a physical foundation for the northeast United
States (US), in order to demonstrate the potential for
climate-informed seasonal streamflow forecasts in this
region.

2. Background

2.1. Study region

The specific study region within the northeast US is
the upper portion of the Delaware River Basin (DRB),
located in the Catskill region of New York State, near
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Figure 1. The Delaware River Basin, with the upper basin streamflow study region boxed. (Source: http://commons.wikimedia.org/wiki/
File : Delawarerivermap.png). This figure is available in colour online at www.interscience.wiley.com/ijoc

the northeast corner of Pennsylvania (Figure 1). Three
water supply reservoirs in the upper DRB provide roughly
50% of the total drinking water for New York City.
A renowned trout fishery is located immediately down-
stream of the reservoirs, and residents along the river
further downstream are susceptible to periodic flood-
ing. Hence, there are multiple competing interests among
DRB stakeholders, which pose a considerable water man-
agement challenge that can potentially be assuaged with
effective climate-based seasonal streamflow forecasts.

GCMs are not known to be especially skillful in the
northeast US for hydroclimatic fluxes such as precipita-
tion, due in part to low signal to noise ratios in this region
(Dirmeyer et al., 2003; Marengo et al., 2003; Quan et al.,
2006). Modest GCM skill in turn compromises the reli-
ability of subsequent downscaling and streamflow con-
versions, which also have their own inherent uncertain-
ties. Therefore, in this study, we pursue direct statistical
linkages between upper DRB streamflow and preceding
climatic states, based on the belief that statistical meth-
ods hold the greatest promise for seasonal streamflow
forecasts in this region.

2.2. Hydroclimatological drivers

Precipitation in the upper DRB region is attributed mainly
to frontal systems and cyclogenesis (Zishka and Smith,
1980; Gurka et al., 1995; Hartley and Keables, 1998;
Bradbury et al., 2003; Vermette, 2007). A common pat-
tern of cyclogenesis giving rise to storms in the northeast

US originates over the Gulf of Mexico or the Atlantic
coast of the southeastern US and travels northeast through
the Middle-Atlantic states and New England. Another
common cyclogenesis pattern originates near the Great
Lakes region and travels eastward, with moisture supplied
from the extra-tropical Pacific, Gulf of Mexico or Atlantic
Ocean. These storm tracks are supported by both the mid-
latitude and sub-topical jet streams. Occasionally, tropical
cyclones originating in the tropical North Atlantic track
through the US northeast during the late summer and
early fall. These storms often lose their tropical character-
istics and bear more resemblance to mid-latitude cyclones
upon reaching mid-latitudes (Vermette, 2007), but they
nevertheless tend to deposit relatively large amounts of
precipitation over the region. These precipitation-bearing
phenomena should naturally result in elevated streamflow
values for the upper DRB region.

A number of studies have searched for statistically
significant and physically meaningful drivers of seasonal
hydroclimate within this general region (Barlow et al.,
2000; Bradbury et al., 2002; Joyce, 2002; Bradbury et al.,
2003; Jutla et al., 2006; Kingston et al., 2006; Sveinsson
et al., 2008a, 2008b). Variables such as cyclone activity,
precipitation, and streamflow have been associated with
climatic modes such as the El Nino-Southern Oscillation
(ENSO), the North Atlantic Oscillation (NAO), the
Pacific Decadal Oscillation (PDO), and the Pacific/North
American Pattern (PNA), mainly during winter and
spring. Hydroclimatic associations have also been made
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with alternative climate descriptors such as synoptic
weather patterns (Miller et al., 2006) and snow depth
(Gong et al., 2010). However, the statistical significance
is generally modest, and a consistent and coherent
explanation for streamflow variability in the northeast
US has yet to emerge from this body of literature.
Furthermore, these relationships tend to decrease in
strength and statistical significance as one moves inland
from coastal New England towards the interior Middle-
Atlantic region.

One likely reason for this ambiguity is that the north-
east US is not geographically proximal to the major
climate modes. For example, ENSO, PDO, and PNA all
originate in the Pacific sector, whereas the NAO origi-
nates downgradient from the region. Northeast US hydro-
climate may very well be influenced by these phenomena,
but may not be strongly tied to the geographic centres of
action embodied by their indices (Leathers et al., 2008).
An associated reason is that atmospheric moisture is sup-
plied to this region from multiple sources, spanning from
the extra-tropical Pacific to the tropical Atlantic. Thus
multiple climatic drivers are likely involved, which miti-
gates the statistical significance of any single driver when
evaluated in isolation.

Another reason is that the existing literature for this
region focuses on linear regression-type relationships,
whereas the climatic drivers may very well be nonlinearly
related to regional hydroclimate as can be expected from
the constitutive equations of ocean–atmosphere dynam-
ics. Nonlinear methods have been utilized to develop
similar hydroclimatic relationships in other regions. For
example, mutual information (Fraser and Swinney, 1986;
Moon et al., 1995; Khan et al., 2006) and related meth-
ods have been used to identify the strength of nonlinear
dependence and also to select predictors (Sharma, 2000a,
2000b; Sharma et al., 2000). Here, we introduce a direct
approach for identifying nonlinear or linear dependence
using a method that seeks to identify univariate relation-
ships between predictors and predictands and the associ-
ated strength of relationship without a prior assumption
as to the form of the nonlinearity. Continuity and dif-
ferentiability of an underlying regression relationship is
assumed, and an approximation to an arbitrary regression
function in the spirit of Taylor series approximation under
non-equal spacing of predictor values is used to form the
regression function. The utility of the approach is that
generalized cross-validation (GCV) is used to directly
assess the potential predictability and to offer a stan-
dardized comparison of predictability across each of the
individual potential predictors. Thus, although a predic-
tive framework is used, we use it primarily in a diagnostic
context to identify potential, spatially coherent regions in
a climate field that contribute to the prediction of the tar-
get hydrologic variable. We do not address the problem
of the selection of the best subset of predictors in this
article or of the development of the associated prediction
model and its testing. Rather, the focus is on the appli-
cation of the method to identify potential predictors and

to discuss their physical relevance, uni- and in bivariate
interactions.

2.3. Study objectives

With respect to the specific goals of this study, the
existing literature on hydroclimatic teleconnections for
this region has yet to establish a clear potential for
climate-informed seasonal streamflow forecasts. Many
of the aforementioned studies focus on climatic drivers
of precipitation or storm events and infer a consequent
association with streamflow, but do not explicitly iden-
tify a streamflow relationship through either landsurface
hydrologic modelling or direct statistical analysis. The
literature also by and large reports concurrent seasonal
relationships, whereas seasonal lead–lag relationships are
required to demonstrate predictive potential. Note that
preceding surface temperatures and local snow cover
are the two main drivers that contain seasonal memory
and so can exhibit lead–lag relationships. Atmospheric
drivers do not contain seasonal memory and therefore
are expected to exhibit only concurrent relationships, or
serve as a proxy for other drivers that contain memory.

One recent exception is Miller et al. (2006), which
directly related spring season streamflow in a river basin
adjacent to the upper DRB to synoptic weather pattern
categories during the preceding winter. They found that
the frequency and type of regional weather patterns to be
a better indicator of subsequent streamflow than large-
scale climate indices. However, these synoptic weather
pattern predictors may simply be an atmospheric proxy
for the actual memory-containing precursors. The anoma-
lous water fluxes generated by these winter weather pat-
terns are stored at the surface in the form of snow or
ice that melts in the following spring and is released
to streamflow. Furthermore, the weather patterns them-
selves are in all likelihood depositing moisture derived
from oceanic sources and initiated by oceanic anoma-
lies. Nevertheless, a linear model explaining 54% of the
streamflow variance was achieved, but only after remov-
ing extreme values from the streamflow time series.

This study will establish a more robust physical foun-
dation for seasonal streamflow forecasts in the northeast
US, by addressing a number of key limitations in the
existing literature. First, multiple predictor regions will be
considered, as atmospheric moisture arrives in the upper
DRB from a variety of sources. Initial assessments of
individual regions will be complemented by groups of
predictor regions in a multivariate framework. Second,
sea surface temperatures (SSTs) will be investigated as
the predictor variable, as the moisture sources are ulti-
mately of oceanic origin. Use of hemispheric-scale SST
fields allows for a more flexible identification of predictor
regions than climate modes whose geographic centres of
action are fixed. Third, nonlinear regression techniques
will be utilized, as the climatic drivers of upper DRB
streamflow are not necessarily linear. The ambiguous
relationships reported in the literature may be a result
of nonlinear behaviour being only partially captured by
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linear analyses, e.g. removing extreme values in Miller
et al. (2006) which are likely to behave nonlinearly.

3. Data and methods

Climatic precursors will be pursued for streamflow enter-
ing the Pepacton Reservoir, along the east branch of the
upper Delaware River. Historical unobstructed stream-
flow data are obtained from US Geological Survey gaug-
ing station 01 413 500 at Margaretville, NY, located just
upstream of the Pepacton Reservoir. Monthly averaged
streamflow at USGS stations entering all three New York
City water supply reservoirs are highly correlated, but
the Pepacton Reservoir inflow has the longest continuous
record spanning 68 years (1938–2006). Therefore, this
record is used to represent naturally occurring stream-
flow variability in the upper DRB region. Historical SST
data over this period is obtained from the Kaplan SST V2
dataset provided by the NOAA/OAR/ESRL PSD, Boul-
der, CO, USA (Kaplan et al., 1998). Monthly averaged
SST values are available on a 5° × 5° resolution global
grid, from 1856 to present.

The autumn season is selected for streamflow pre-
diction, as this is the historical low storage season
for the upper DRB reservoirs, and is also character-
ized by high interannual streamflow variability. Opera-
tional rule curves for the reservoirs specify the lowest
storage requirements during October and November, so
effective seasonal forecasts of streamflow during this
2-month period would be especially helpful to regional
water managers. Therefore, average streamflow for Octo-
ber–November (ON) is related to average SST anomalies
for the preceding August–September (AS), over the 68-
year period of record. Note that snowmelt is not a con-
tributor to autumn streamflow in this region, which leaves
SSTs as the only climate driver with seasonal memory.

Nonlinear relationships are investigated using a tech-
nique known as local regression, or LOESS smoothing
(Loader, 1999; Lall et al., 2006; Moon et al., 2008).
In this method, a series of simple least-squares regres-
sion models are fit using localized subsets of the overall
dataset. Each predictand is estimated using a unique sub-
set of temporally proximal predictor values, rather than
the entire set of predictors. The results of each subset
model taken together comprise the final local regression
relationship. A key advantage of this technique is that
the final regression model is not constrained to be a sin-
gle polynomial function that is applied to all data points,
hence there is greater flexibility in fitting the model to
the observed data. It can be used to develop multivariate
as well as univariate models.

Local regression can be computationally intensive
since a separate subset regression model is developed
for each data point. However, the basic rationale is
that nearby data points should be strongly and simply
related, so that only low-degree polynomials should be
required for each subset. In addition, a weighting function
is usually applied so that the subset data points closer

to the point being modelled factor more strongly into
the local regression. Finally, the strength of the overall
regression can vary with the subset size selected. Use
of a very large subset approaches a standard least-
squares polynomial regression, whereas a very small
subset retains the random errors in the data. The subset
size that yields the strongest relationship is retained as
the local regression result.

For this study, the strength of the overall regression
is measured using a GCV score, where a smaller GCV
score indicates a stronger relationship. The subset size
is expressed as an α index, where a larger α index
represents a smaller subset. Also, a linear regression is
fit for each localized subset, so that the local regression
result for a large subset converges toward a simple linear
regression model for the entire dataset. In this way, the
local regression analysis does not necessarily imply a
nonlinear relationship. If using the entire dataset for each
local regression relationship results in the lowest GCV
score, then the analysis indicates that the best fit is a
simple linear one.

4. Results

4.1. Gridpoint univariate local regressions
We begin with a local regression of individual gridpoint
SST time series versus the DRB streamflow time series.
Figure 2a shows the resulting GCV score for each grid-
point univariate local regression, and indicates three SST
regions with relatively low GCV scores, identified using
black rectangles. Figure 2b shows the corresponding frac-
tion of the 68-point dataset used for the localized subset
regressions at each gridpoint, and indicates that the three
low GCV score regions are also characterized by rela-
tively small subsets. Hence, three coherent SST regions
are identified which exhibit notable nonlinear relation-
ships with subsequent DRB streamflow.

Based on general atmospheric circulation theory, these
three SST regions can plausibly influence DRB stream-
flow. One region is in the Bering Sea (henceforth referred
to as BS) underlying the Aleutian Low centre of the
Pacific-North American (PNA) pattern, which is known
to influence mid-latitude circulation over North America.
The second region is located in the tropical Atlantic, off
the coast of Africa (henceforth referred to as CA). SST
anomalies in this region are known to initiate tropical
cyclone activity that often reaches North America. The
third region is located in the tropical Pacific, just west
of Mexico (henceforth referred to as WM). This region
underlies the subtropical jet which can carry moisture
across southern North America, and is near the northern
edge of the SST anomaly region associated with the El
Nino-Southern Oscillation (ENSO) pattern. Hence, our
analysis will focus on these three SST regions that are
precursors of DRB streamflow.

4.2. Regional univariate local regressions
For each of the three regions identified in Figure 2,
an area-weighted average SST time series is computed

Copyright  2010 Royal Meteorological Society Int. J. Climatol. (2010)



CLIMATIC STREAMFLOW PRECURSORS

Figure 2. Univariate local regression results for AS gridpoint sea surface temperature versus ON DRB streamflow. (a) Generalized
cross-covariance score, where smaller values indicate a stronger regression; (b) regression α index, where larger values indicate greater

nonlinearity. Bering Sea (BS), Coast of Africa (CA) and West of Mexico (WM) regions delineated with black rectangles.

Figure 3. Univariate local regression results for AS regional sea surface temperature versus DRB ON streamflow. (a) Bering Sea; (b) Coast of
Africa; and (c) West of Mexico. This figure is available in colour online at www.interscience.wiley.com/ijoc

and regressed against DRB streamflow. Results for each
regional univariate local regression are presented in
Figure 3. SST anomalies in the BS region exhibit a mono-
tonically increasing relationship with subsequent DRB
streamflow (Figure 3a). This is reasonable, as warmer
SSTs generate more rising air and hence, lower atmo-
spheric pressure over this region, which is characteristic
of a positive PNA pattern and meridional circulation over
North America. This can potentially carry more moisture
northward from the Gulf of Mexico, along the eastern

seaboard of North America, and into the DRB region.
Conversely, negative BS SSTs can lead to a negative
PNA pattern, zonal circulation and hence, less mois-
ture transport into the DRB region. However, Figure 3a
indicates greater streamflow sensitivity to positive BS
SST anomalies than negative ones, so that the overall
relationship exhibits slight nonlinearity. Note that the
PNA pattern is recognized to occur year round, although
it tends to be weaker during the summer months (Climate
Prediction Center, 2005).

Copyright  2010 Royal Meteorological Society Int. J. Climatol. (2010)



G. GONG et al.

Figure 3b shows the local regression result for the CA
region. Elevated DRB streamflows appear to be related
to large positive CA SST anomalies. This is expected,
as warm SSTs in the tropical Atlantic initiate tropi-
cal cyclone activity that can evolve into tropical storms
or hurricanes. These systems occasionally reach eastern
North America, where their considerable precipitation
results in elevated streamflow. However, a correspond-
ing streamflow reduction does not materialize for nega-
tive CA SST anomalies. Figure 3b actually indicates ele-
vated streamflows with greater negative SST anomalies,
although there is no physical basis for this behaviour. It is
likely influenced by one extreme data point (1977), with
the coldest CA SST value but the highest DRB stream-
flow value. A review of tropical cyclone stormtracks for
this year indicates that very little cyclone activity reached
the eastern US (Jarvinen et al., 1984) so that other pro-
cesses are responsible for the elevated streamflows during
this year. Note in Figure 3a that this year exhibits the
highest BS SST value.

Figure 3c shows the local regression result for the WM
region. As for the BS and CA regions, elevated DRB
streamflows appear to be related to positive WM SST
anomalies. This is also reasonable, as warmer SSTs in
this region will allow for more evaporated moisture to
be transported along the subtropical jet stream and into
the eastern United States. Also, WM is near the northern
fringe of the ENSO region, whose positive anomalies are
generally associated with increased precipitation across
much of the United States. As for the CA region, a
corresponding streamflow reduction does not materialize
for negative WM SST anomalies, and apparent elevated
streamflows with greater negative SST anomalies are
likely the result of one extreme data point (1955).
Tropical cyclone activity reaching the eastern US was
considerable for this year (Jarvinen et al., 1984), which
likely explains the elevated streamflows. This extreme
data point is particularly influential as it is isolated
from all other data points in Figure 3c and hence exerts
considerable leverage on the regression.

The three univariate local regressions shown in
Figure 3 have identified relationships between regional
SST anomalies and DRB streamflow that are physically
plausible, but nonlinear and asymmetric. Such complex
behaviour would not have been detected using simple
linear regression analyses. These nonlinearities exhibited
by each regional regression partially mask the underly-
ing physical relationship and are likely due to competing
physical factors such as interactions between the vari-
ous physical mechanisms. For example, the relatively
low sensitivity to negative BS SST anomalies may be
related to the WM region. Although a negative PNA pat-
tern reduces moisture transport from the Gulf of Mexico,
the zonal circulation across North America may facilitate
moisture transport into eastern North America via the
subtropical jet stream. Also, the streamflow response to
CA SST is likely constrained to strong positive anomalies
that produce tropical cyclones of sufficient frequency and
magnitude, so that an appreciable number will track as

far as the DRB region. For all other years, other factors
are likely to have a greater influence on DRB streamflow,
so that a physically meaningful relationship with CA SST
does not materialize.

4.3. Regional bivariate local regressions

In order to capture the apparent interaction between the
different regional SST precursors for DRB streamflow,
a series of bivariate local regressions are performed, as
presented in Figure 4. The combined influence of the BS
and CA regions (Figure 4a) shows elevated streamflows
for positive BS SST anomalies (i.e. meridional circulation
over NA), regardless of the state of CA SSTs. Stream-
flows are modestly reduced for negative BS SST anoma-
lies, except for increased streamflows when CA SSTs are
high, i.e. when tropical cyclone activity is likely. Con-
versely, negative CA SST anomalies have a negligible
impact on streamflow. Figure 4a clearly shows nonlin-
ear interactions between the BS and CA regions, and
their combined effect on DRB streamflow is physically
coherent.

The combined influence of the BS and WM regions
(Figure 4b) similarly shows a dominant elevated stream-
flow response to positive BS SST anomalies, and a sec-
ondary elevated streamflow response to positive WM SST
anomalies (i.e. a moist subtropical jet) when BS SSTs
are average or low. Elevated streamflows are also asso-
ciated with negative WM SST anomalies, although again
this response may be unduly leveraged by the extreme
1955 data point in which frequent tropical cyclone activ-
ity resulted in elevated streamflows.

The combined influence of the CA and WM regions
(Figure 4c) shows consistent elevated streamflows only
for extreme positive CA SST anomalies, i.e. high tropical
cyclone activity. Elevated streamflow in response to
positive WM SST anomalies is less apparent compared to
Figure 4b. Once again, the elevated streamflow response
to negative WM SST anomalies is highly leveraged
by the extreme 1955 data point, although positive CA
SST anomalies during this year are consistent with
the considerable tropical cyclone activity that occurred
during this year. All three upper DRB water supply
reservoirs exhibited similarly elevated inflow during this
year (1955), hence tropical storm activity seems to be
an influential factor. Nevertheless, nonlinear interactions
involving WM SSTs appear to have a complicated
combined effect on DRB streamflow.

This bivariate regression analysis reconciles the low
CA SST, high streamflow 1977 data point in Figure 3b,
as this data point (i.e. highest DRB streamflow over the
68-year period of record) also exhibits the highest BS
SST as indicated in Figure 3a Hence, Figure 4a attributes
this elevated streamflow value to the BS region rather
than the CA region. Unfortunately, the low WM SST,
high streamflow 1955 data point in Figure 3c is not as
well reconciled. This data point (i.e. second highest DRB
streamflow over the 68-year period of record) exhibits
near-average BS SST values (Figure 3a) and elevated
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Figure 4. Bivariate local regression results for AS regional sea surface temperature versus DRB ON streamflow. Contours represent regressed
streamflow values in cfs. (a) Bering Sea and Coast of Africa; (b) Bering Sea and West of Mexico; and (c) Coast of Africa and West of Mexico.

This figure is available in colour online at www.interscience.wiley.com/ijoc

but not extreme CA SST values (Figure 3b). It is also
far removed from other data points in Figure 3c. Hence,
the bivariate regressions attribute the elevated streamflow
during this year primarily to the WM region and yields a
broad but highly leveraged elevated streamflow response
to negative WM SST anomalies in Figure 4b and c.

4.4. Comparison of regression models

The results from the six regional local regression models
(three univariate and three bivariate) are compiled in
Table I. All models contain nonlinear relationships as
indicated by subset fractions less than 1, with the
univariate regression for the BS region being closest to
linear. The bivariate models all yield stronger results
than the univariate models, in terms of both lower GCV
scores and larger fractions of the observed streamflow

Table I. Summary of regional local regression results.

SST predictors Subset fraction GCV R2

BS 0.90 26568 0.28
CA 0.50 26245 0.33
WM 0.25 27701 0.39
BS and CA 0.75 24182 0.45
BS and WM 0.75 24324 0.43
CA and WM 0.25 21097 0.68

variance captured (i.e. correlation R2). This confirms that
streamflow in the DRB region is not driven by a single
dominant climatic phenomenon, but rather is influenced
by a variety of climatic processes.

Copyright  2010 Royal Meteorological Society Int. J. Climatol. (2010)
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Among the bivariate models, the combination of WM
and CA SSTs yields the strongest local regression rela-
tionship, explaining 0.68 of the upper DRB streamflow
variability, which is statistically significant at the 99%
level (i.e. p < 0.01). Figure 5 plots the time series of
simulated DRB streamflows for this model against obser-
vations, and also the residual time series, histogram and
probability plot. The local regression model replicates
the basic features of the observed streamflow time series
remarkably well, and the residuals are normally dis-
tributed. This result supports the notion that regional
SSTs are nonlinear climatic precursors of autumn stream-
flow in the northeast US.

An analogous multiple linear regression is also per-
formed to compare its performance against the local
regression model. Gridpoint univariate linear regression
results are shown in Figure 6, which reveal two regions
that exhibit statistically significant (at the 95% level) lin-
ear correlation coefficients R between SST and DRB
streamflow. These regions are displaced slightly from
the previously defined BS and CA regions for the local
regression, and so are referred to as BS′ and CA′, and
delineated with black rectangles in Figure 6. Note that
significant linear correlations are not found in the vicin-
ity of the WM region chosen by local regression. The
results of a bivariate linear regression model developed
using SSTs averaged over the BS′ and CA′ regions are
shown in Figure 7. This linear model performs notably
worse than all six local regressions. Compared to the
strongest local regression model, the GCV score is 36%

greater (28 588 vs 21 097), and the fraction of observed
variance explained R2 is 71% smaller (0.20 vs 0.68). The
linear model time series exhibits considerably less inter-
annual variability than observations, and the residuals are
not normally distributed. For the region and season con-
sidered in this study at least, local regression appears to
exhibit a marked improvement over linear regression, for
detecting summer SST precursors of autumn streamflow.

4.5. Forecast potential

The local regression time series model shown in Figure 6
uses the full period of record to identify a historical rela-
tionship between autumn DRB streamflow and preceding
summer regional SSTs. Specifically, the model simulated
streamflow for a given year was regressed using a local
subset of data that included the year being simulated.
Seasonal forecasts of future DRB streamflows obviously
cannot utilize streamflow data from the year being fore-
cast. Therefore, to assess the forecast potential, leave-
one-out cross-validation is applied to the local regression
time series model, by excluding the year being simulated
from the local regression subset for that year.

Figure 8 plots the resulting cross-validated local regres-
sion time series against observations. The strength of
this model is considerably weaker than without cross-
validation (Figure 5), e.g. the range of simulated stream-
flow values is substantially reduced. Also, only 0.13 of
the observed streamflow variability is explained, which is
less than for the full data local regression (0.68) and also

Figure 5. Bivariate local regression results for CA and WM region sea surface temperatures versus DRB ON streamflow. (a) Simulated versus
observed time series; (b) residual time series; (c) residual histogram; and (d) residual normal probability plot.
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Figure 6. Univariate linear regression results for AS gridpoint sea surface temperature versus ON DRB streamflow. Only gridpoints with
correlation coefficients R that are significant at the 95% level are shown. Bering Sea (BS′) and Coast of Africa (CA′) regions delineated with

black rectangles.

Figure 7. Bivariate linear regression results for BS and CA region sea surface temperatures versus DRB ON streamflow. (a) Simulated versus
observed time series; (b) residual time series; (c) residual histogram; and (d) residual normal probability plot.

the linear regression (0.20). However, the cross-validated
local regression does appear to capture low frequency
variability better than the fitted (non-cross-validated) lin-
ear regression (Figure 7), e.g. the low streamflow periods
during the early 1960s, the early 1980s and around the
year 2000. Nevertheless, although the local regression
identifies SST regions that are physically meaningful

precursors of DRB streamflow, these nonlinear rela-
tionships are not yet strong enough to produce useful
forecasts.

Figure 8 also shows the 95% confidence limits for the
cross-validated model. Observed streamflow for 6 years
(indicated with black squares) fall outside of these
confidence limits, which exceeds the 95% threshold
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Figure 8. Cross-validated DRB ON streamflow forecast time series using bivariate local regression model for CA and WM region sea surface
temperature predictors. Observations which fall outside of the 95% forecast confidence limits are denoted with black squares.

of 3.4 years expected for the 68-year dataset. Figure 9
shows where these 6 years reside in the state space of
the two regression predictors. One data point resides
near the average for both parameters, when anomalous
streamflow values would likely be driven by factors other
than the model predictors. This suggests that forecast
skill may improve with the inclusion of other climatic
predictors in addition to the BS and CA SST regions.
The other five data points reside in areas of the state
space that are somewhat removed from the rest of the data
points, so that cross-validated regressions that exclude the
data point would effectively eliminate the influence of
that observation, and hence weaken the regression. This
suggests that the forecast skill may improve with a longer
period of record that increases the sampling frequency of
these SST conditions.

5. Conclusions

This study identifies three regions whose summer SST
values act as climatic precursors of autumn streamflow
in the Delaware River Basin located in the northeast US.
Each region has a physically plausible influence on DRB
streamflow, arising from general circulation patterns
and established cyclonic phenomena. Univariate local
regression analyses detect nonlinearities in the streamflow
response, and bivariate local regressions reveal some of
the interactions that occur between these SST forcing
regions. A bivariate local regression involving SSTs
in regions west of Mexico and off the Atlantic coast
of Africa yields the strongest statistical relationship,
explaining 68% of the observed interannual streamflow
variability. This represents a vast improvement over an
analogous bivariate linear regression using the same two
general SST regions, and a considerable improvement

Figure 9. BS and CA region sea surface temperature predictor values
over 68-year study period. Years in which observed streamflow falls
outside of the 95% forecast confidence limits using these predictors are
denoted with black squares. This figure is available in colour online at

www.interscience.wiley.com/ijoc
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over previous efforts to identify streamflow predictability
in this region (Miller et al., 2006). Although these
gains are diminished under cross-validation, the nonlinear
models, which typically reduce bias but have higher
variance of estimation, still perform well relative to the
non-cross-validated linear models.

These local regression analyses shed some light on
the relationships that exist between DRB streamflow and
preceding regional SSTs. Nonlinearities exist primarily
in the form of asymmetries, i.e. the streamflow response
to positive anomalies of a SST predictor is not equal
and opposite to the response to negative anomalies. Such
behaviour is not at all surprising given the complexities
of the physical phenomena involved and their ability to
influence one another. Moreover, the hydroclimatology
of the DRB region is not dominated by any single one
of these phenomena, so accounting for their interactions
in a multivariate framework is crucial to improving the
predictive potential of streamflow in this region. Analysis
of intervening circulation variables could yield additional
insights as to the precise mechanisms involved, although
it would likely have little impact on predictive potential
as the seasonal memory is contained in the SSTs.

Although the results of this study demonstrate stronger
and more coherent streamflow precursors than have pre-
viously been identified in the literature, cross-validation
indicates that translating these physically meaningful
climate precursors into effective seasonal streamflow
forecasts still poses a significant challenge. Additional
research along these lines may be beneficial in this regard.
A longer period of record could conceivably yield better
results through improved coverage of the predictor state
space region, thereby reducing the leverage of extreme
data points, reducing estimation variance and improving
both the simulation model and cross-validated forecasts.
A multivariate local regression involving all three SST
regions could also be performed. Nevertheless, this study
has helped improve our understanding of climatic stream-
flow precursors in the northeast US and helped to estab-
lish its predictive potential. In future work, we expect
to present a Bayesian non-parametric/nonlinear regres-
sion model where predictive uncertainty in nonlinear
modelling is formally dealt with and multiple candidate
models are optimally combined.

Finally, it is worth noting that seasonal average (total)
flows are comprised of baseflow at the beginning of the
season, baseflow recession subsequent to precipitation
events and event runoff hydrographs. At the seasonal time
scale, the first component may be determined by the SST-
forced anomalous circulation and soil moisture during the
preceding season, and hence potentially serve as another
streamflow precursor. Meanwhile, the latter two compo-
nents are effectively determined by the number of single
and composite precipitation events and the cumulative
event rainfall during the season being predicted. Often,
the number of large precipitation events that contribute
to a significant enhancement of seasonal precipitation and
hence streamflow is small. Thus, it is useful to explore
how source regions of moisture or steering of atmospheric

circulation and water vapour transport correspond to the
event frequency and amount characteristics. Although
some promising preliminary work has been pursued in
this direction, we expect to show an inter-comparison
of GCM dynamics and re-analysis based reconstructions
of the relevant statistics and their correspondence to the
seasonal relationships to predictors in a future paper.
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