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FOREWORD 
 

Aging dams and levees, in combination with an increasing frequency of climate extremes pose an 
unprecedented risk to communities around the world. The financial risk associated with the failure of such assets is 
unmapped, due in part to the complexity of the chain of events triggered by the failure of a major dam or levee, and of 
the difficulty of estimating the probability associated with such a failure. In this report, we explore how the causal chain 
of the communities and critical infrastructure at risk can be quantified using dams as an example. We outline the 
nature of this challenge, given the existing methodologies, data availability, and gaps in dam risks assessments, and 
propose a framework for a rapid screening of the changing probabilities of catastrophic failure of aging dams and the 
assets subsequently at risk.  

The situation in the USA is of particular concern1. There is a very large inventory (>90,000) of aging dams with a 
median age of nearly 60 years, compared to a nominal design life of 50 years. At least 1680 of these dams are 
considered to pose a high hazard of failure, and may require over $70 billion in repairsa.  Often bridges, major roads and 
rail networks, electric power generation and transmission facilities, municipal water and wastewater treatment and 
distribution systems, solid waste handling facilities, commercial establishments, hospitals, warehousing and distribution 
centers, airports, riverine navigation facilities and population centers risk being flooded if one of these dams were to fail. 
Dam failures have occurred in recent years during persistent rainfall events. Fortunately, most of these have been small 
dams2,b, whose failure has had a modest impact. However, there have been some notable close calls. In February 2017 
the Oroville Dam in California, the tallest dam in the USA, experienced a failure of the main and emergency spillways 
following a persistent period of rainfall that filled the reservoir. The flow over the spillways was 5-10% of the design 
flow, and the spillway failure was ascribed to "long-term systemic failure"  reflecting inadequate design and 
maintenancec.  Over 200,000 people were evacuated as a precautionary measure anticipating dam failure, and the cost 
of repair has exceeded $1.1 billion. Concerns to 650 other dams in California have subsequently been voicedd.  A similar 
situation evolved in Houston in August 2017, when the US Army Corps of Engineers (USACE) saved the Addicks and 
Barker dams from imminent overtopping and potential failure, through an emergency release of water in the middle of 
the night during hurricane Harvey. The USACE, which owns these dams, had identified much earlier that the dams built 
in the 1940s, had a “risk of catastrophic failure”, and may be “critically near failure” even under normal operations, and 
were listed as extremely high risk in 2009. Funds had been authorized for repairs which were not completed at the time 
of the hurricanee. There are over 7,000 dams listed as hazardous in Texas, of which these two have been repeatedly 
identified as high riskf. Formal dam safety risk analyses are conducted by the USACE and other organizations, but a very 
small fraction of the US inventory of dams has been processed in this way. Given the rather limited number of dams of 
high profile that have been analyzed, the task of prioritizing and assessing the potential economic disruption that dam 
failures could cause in the USA, especially as climate extremes become more intense and frequent is daunting.  

 

 
a https://www.sacbee.com/news/california/water-and-drought/article193151499.html 
b https://www.weather.gov/media/publications/assessments/SCFlooding_072216_Signed_Final.pdf 
c https://www.sacbee.com/news/california/water-and-drought/article193151499.html 
d https://www.courthousenews.com/creaky-leaky-dams-among-biggest-risks-to-california-audit/ 
e https://weather.com/storms/hurricane/news/houston-dams-harvey-addicks-barker, https://www.hydroreview.com/2016/03/02/corps-
designates-addicks-and-barker-dams-extremely-high-risk/#gref 
f https://www.houstonpublicmedia.org/articles/news/2016/03/07/139872/texas-has-thousands-of-bad-dams-two-in-houston-deemed-extremely-
high-risk/ 
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The objectives of the work reported here were to: 
 

(1) Identify the risk pathways associated with climate induced failure of aging dams 
(2) Assess and demonstrate strategies for the rapid quantification of these risks using publicly available data sources 

in the USA 
(3) Develop and demonstrate an approach for the rapid identification of assets at risk if a dam were to fail 
(4) Recommend an approach for how a national assessment of dam failure risk could be performed and updated on 

a regular basis with a focus on portfolio risk  
 

Our approach intends to provide a preliminary ranking of the priority areas of concern and can be generalized to 
other countries.   An intended application is for a portfolio level risk analysis by investors, asset managers, and 
insurance providers. It is not intended to be a rigorous dam failure risk analysis at each of the 90,000 locations. The 
USACE typically invests over 2 years in a detailed study at a single site, at a considerable expense. They own 700 dams, 
about 50% of federally owned dams, and target only their dams for analysis. The vast majority of US dams are privately 
owned or owned by state and municipal agencies, and detailed risk analyses are typically not available. In 2015, the 
USACE estimated that to fix all dams in their portfolio that need repair would cost $24 billion, and take 50 years at the 
current funding rateg. Our approach is patterned after their methodology but is not as exhaustive given the resources 
available.   

Using dams in the Cumberland River Basin as an example, we provide a framework to quantify the causal 
network of the climate and age-induced changing risk of dam failures, and prioritize different dams or regions in terms 
of potential financial impact. This provides the foundation for a comprehensive national risk estimation and 
prioritization effort for financial and other mitigation actions. 

The first part of this report focuses on the trigger events of dam failures. Using probabilistic models, we assess 
the spatial and temporal patterns of extreme rainfall and stream flow events that could trigger the overtopping failure 
of a single dam or the cascading failure of a series of dams within a region. The failure probability varies with time, due 
to (1) inter-annual and decadal climate variability; (2) anthropogenic climate change; (3) the changing free capacity of a 
dam due to sedimentation; and (4) the fragility of a dam due to age and type of construction material. An approach to 
the estimation of these probabilities as a measure of risk was developed.  

A challenge with the estimation of a dam’s probability of failure is the lack of readily available data on the main 
parameters that may induce failure. In particular, data related to the design and operation of a dam such as elevation 
time series, discharge-elevation curves, and storage-area curves are not included in national dam inventories available 
to the public. Historical inflow data (stream flows and precipitation) may also be limited or discontinuous. Future climate 
projections made by ocean-atmosphere general circulation models (GCMs) are known to have large biases and 
uncertainty especially for precipitation projections. For the dams included in our test case, we found that there is an 
increasing trend in the number of events that could lead to overtopping. As well storage loss due to sedimentation may 
be shifting the return periods assumed for critical dam storage elevations (e.g. the probability of being at the top of the 
flood storage elevation), which increases the probability of overtopping as even smaller, more recurrent flood volumes 
can exceed the remaining free storage.  

 
g https://www.usace.army.mil/Media/Fact-Sheets/Fact-Sheet-Article-View/Article/590578/dam-safety-facts-and-figures/ 
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The second part focuses on the quantification of damages in the event of a failure. A detailed regional analysis 
was performed to shed light on the kinds of financial impacts that may emerge as a concern, and for which public data 
was available. We find that the 100 and 500-year flood plains usually considered for insurance purposes would likely 
be overwhelmed by a dam break for several river miles below the dam, and that current dam hazard classifications do 
not give visibility to the different types of hazards that each of them poses. In our case study, all the dams were 
classified as High Hazard, yet the financial impacts of the failure of each of them were strikingly different.  

We highlight that at this point, there is no clear understanding of the scale of the economic disruption that 
would be caused by the dam failures consequent to climate induced triggers. While we are able to provide a preliminary 
approach to trigger probability quantification, and the mapping of the vulnerability of critical infrastructure, population 
centers, and toxic waste sites to flooding from dam failure, the resources available have constrained our ability to 
develop and test a strategy for the aggregate financial risk faced by the USA nationally or regionally from such 
failures. An approach to address this challenge would require a quantification of both the life and property losses as 
well as the supply chain effects and larger scale propagation of the loss of regional services. Linkages to economic and 
valuation models that would allow such a quantification are still needed, and would constitute a contribution to the 
narrative on climate change impacts, as well as on the national investment needs for aging infrastructure.  
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INTRODUCTION 
 

A changing climate presents us with the potential for more frequent and more intense precipitation extremes 
and hence an increasing risk for floods and droughts. Dams and levees have been used as one of the measures for 
flood control, and dams are also used for buffering drought risks. The large, US portfolio of dams now has a 
median age that exceeds its design life, and the state of maintenance of the vast majority of the dams is a 
concern. Consequently, there is concern over the potential failure of one or more of these dams through the dual 
threat of climate change and increasing fragility. There is no comprehensive research on understanding this risk, 
or of its financial implications for industry, communities or government across the USA. The potential probability 
of failure of dams is not established. Neither is the potential impact of the failure in terms of the value of the loss 
of services provided by the dam, or the downstream impacts on asset, population and reconstruction needs, or 
the cascading impact across the national and regional economy. The research presented here represents the first 
effort to develop an approach in this direction.  We focus primarily on an identification of methods for the rapid 
quantification of the trigger probability for dam failure, and of the critical infrastructure that would be impacted 
if the dam fails. The approach developed is exemplified for the Cumberland region in the USA, and suggestions 
for its extension, and inclusion in a financial loss estimation strategy are indicated as key research directions.  

The physical conditions of dams and the environment surrounding them experience changes over time, which 
translate into changes in the functionality and safety of the dams. For example, development in flood plains, and 
changes in land use can  increase runoff peaking and volume 1,3, and sediment buildup reduces dam storage 
capacity 4,5. These changes can lead to an increased risk of dam overtopping. Climate variability and change, and 
faulty designs heighten the risk of failure 6,7. Therefore, the exposure of populations and infrastructure networks 
to floods and dam failures changes dynamically 8. Our framework takes into consideration these time dependent 
changes. Figure 1 is a representation of the changing nature of the probabilities and consequences  of dam 
failures, including how we address each of these variables. The product of the estimated probabilities and 
consequences is the changing financial risk. 

For the probability estimation we rely on climate models, historical precipitation, temperature, and 
streamflow data, siltation surveys, and information on the dam operation. For the estimation of the assets at risk 
we use publicly available dam break and consequence tools developed by the US Army Corps of Engineers 
(USACE) and FEMA, and national infrastructure datasets.  The Decision Support System for Infrastructure Security 
Lite (DSS-WISE™Lite)9 is used to simulate dam failures to estimate the inundated area and the affected 
population. The building inventories and depth-damage curves in FEMA’s Hazard-US (HAZUS) software are used 
to estimate the direct financial losses. Other national databases of critical infrastructure are also used in the 
analysis. The AHP method is applied to obtain the dam hazard ranks considering seven criteria shown in Figure 1 
as C1 to C7.  

We provide context on the pressing situation of dams in the United States, which originally motivated this 
research. However, the framework we present can be applied to dams in other geographies.  
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Figure 1 Proposed framework to assess the probability and consequences of dam failures.  
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DAMS IN THE UNITED STATES  
 
In the United States there are over 85,000 dams with an average age of 57 years in the National Inventory of 

Dams (NID) 10. The risks and challenges posed by aging dams in the country are widely acknowledged (ASCE, 
2017; Ho et al., 2017; Imbrogno, 2014; see also timeline in Figure 2).  There have been on average 10 dam failures 
per year in the U.S. from 1848 to 2017, but since 1984 the average failure rate has increased to 24 per year, 
mostly in dams less than 15 meters tall 2. The Associated Press released a report in 201913, which identified  more 
than 1,680 dams in the U.S. as being in poor or in unsatisfactory condition. There are currently no publicly 
available analyses of the estimated financial and other risks that would be posed by the failure of these dams, or 
of their susceptibility to failure considering how the climate has changed relative to the data available when 
these dams were designed 50 to a 100 years ago.  

 
Multiple dams in the U.S. do not comply with the current design flood standards because they were built 

when long precipitation records were not available. Perhaps as a consequence of this, the number of dam 
overtopping incidents far exceed structural failure in the United States 11,14. About 1/3 of dam failures occur by 
overtopping 15, often times due to inadequate spillway capacity. Large dams intended for flood control were 
designed to withstand very large precipitation events but with changes in flood return periods, their design may 
not guarantee safety anymore 16. It was estimated that the probability of hydrologic failure will increase  for most 
dams in California by 2100 7, and this is without considering  reduced storage capacity due to sedimentation.  The 
historical 1 in 100-year flood event is projected to shift towards smaller return periods in many regions of the U.S. 
( Maurer et al., 2018; Vogel et al., 2011; Wobus, 2017).   

 
Figure 2 Recent progression of the state of dams in the United States (some reported in the New York Times, NYT). 
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Increased sediment deposition in dams is recognized as a growing problem in the US. The US Army Corps of 
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and severity of future sedimentation in the reservoirs they operate through their project “Enhancing Reservoir 
Sedimentation Information for Climate Preparedness and Resilience” (RSI). This includes sharing reservoir 
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siltation survey data with the Reservoir Sedimentation Database (RESSED) database maintained by the US 
Geological Survey (USGS). Siltation surveys are needed to evaluate the rate of storage loss per year but budget 
constraints limit the location and frequency in which they are carried out. RESSED contains siltation surveys for 
more than 2,000 dams in the U.S., however there are more than 90,000 dams in the country.  

To give a perspective of the problem, the storage loss percentage was obtained from RESSED for 87 dams 
spread across the U.S. that included siltation surveys. Because surveys are not done frequently, we assumed that 
the storage loss rate is constant over the years so we divided the storage loss percentage by the number of years 
between the start of operation and the survey year and called it the yearly storage loss rate (SLR). The median 
SLR value in the sample was 0.12 %.  Figure 3 shows an estimation of the number of dams with storage loss 
greater than 20%  and 10% in 2020 and by 2040 based on the median SLR. More than 21,000 dams in the U.S. 
may have a loss of storage greater than 10% by 2040- the map is not comprehensive because many dams do not 
have the start of operation date (e.g. many dams in Texas). 

 

Figure 3 Estimate of the number of dams with storage loss greater than 10 and 20% assuming the median SLR. Only dams 
with reported year of construction are shown. Using the 2018 National Inventory of Dams in 2020 

 
The Federal Emergency Management Agency (FEMA) oversees the National Dam Safety Program and the 

Federal Guidelines for Dam Safety, which encourage dam owners and regulators to employ strict safety 
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standards. However, each state has the responsibility over the regulations, inspection, permitting, and 
enforcement of the non-federally owned dams located within its boundaries  (excluding Alabama, which does 
not have a dam safety program), and there is great variability in staffing and quality of the dam safety programs 
across states 1. For example, Missouri performs safety inspections on only about 650 of its more than 5,000 dams 
because state law exempts all dams that are under 35 feet, used for agricultural purposes or that are regulated 
federally. Texas has similar exemptions and around 45% of its dams are exempted as a result. Federal agencies 
operate only 5% of the reservoirs found in the NID, and more than half of the dams in the country belong to 
private entities. The Association of State Dam Safety Officials estimated that it would cost US$64 billion to 
rehabilitate all federal and non-federal dams, and the U.S. Army Corps of Engineers estimated $25 billion is 
needed just to address deficiencies in the dams they operate  12. The concerns over dam safety are real. Lakes are 
being drained in Texas to repair old dams 23, and in Oregon aging dams and dam failure concerns have led to 
community activism to raise funds for repairs because federal and state funding are scarce.  In 2019 FEMA’s 
National Dam Rehabilitation Program had a grant pool of $10 million for all  dams classified as high hazard 
potential in the  U.S. 24; the repair of one of Oregon’s dams alone is estimated at $80 million 25.  

Given the budgetary and personnel constraints, a method to prioritize funding allocation that accounts for 
the likelihood and consequence of dam failures is required to ensure improvements in dam safety where it is 
most needed.  

Dam hazard classifications based on probable loss of life, and social and economic disruptions (not related to 
the probability of failure) exist in the U.S. but variations among federal agencies and states make it difficult to 
develop a consistent national assessment of dam hazards 26,27. The NID includes hazard classifications for the 
dams, but each state and federal agency reports the classifications according to their own metrics.  Additionally, 
flood risk mapping and dam hazard assessments are dynamic endeavors and require continuous updating. This is 
demonstrated in the growing number of high hazard potential dams in the U.S. propelled by changes in land use 
and development downstream of the dams; currently there are approximately 15,627 in this category as per the 
NID  10. However, it is unclear to us, whether the assessments to change a dam hazard classification 
comprehensively examine the current state of the dams (siltation, concrete and foundations), or of downstream 
ecosystems, population and critical infrastructure exposed, and updates related to the increasing intensity and 
persistence of precipitation under climate change. 

There are insurance mechanisms to cover flood losses. In the US, flood insurance rate maps (FIRMs) 
determine the cost of flood insurance through the National Flood Insurance Program (NFIP) managed by FEMA. 
NFIP considers the 1 in 100 year flood return period as base  to delineate flood areas 28. FEMA’s guidance for 
flood risk analysis and mapping recommends the inclusion of dam flood risk information in flood risk maps as 
best practice 29, but this is voluntary. The damages of dam failure could potentially be much greater the 1 in 
100-year flood area in the NFIP but FIRMS, although available throughout the U.S., do not consider dam failure. 
In the section of financial loss estimation, we provide an example of the estimated damages in the 1 in 100-year 
flood zone and 1 in 500-year flood zone with and without including a dam failure in Nashville, TN, showing that 
the inundation area would be greater in the event of a failure.  

FEMA’s periodic updates to flood risk maps typically cost over $2 million per county, so comprehensive 
analyses of dam break induced flooding and impacts that cover the more than 85,000 dams, in over 3,000 
counties across the country would be quite expensive (>$6 billion). A national flood risk update would most likely 
highlight the need for significantly higher additional investments for risk mitigation to cover just the most critical 
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locations. If nothing is done, and some of the largest dams failed, in addition to the loss of life, large damages 
may occur to downstream critical infrastructure (e.g., other dams, electric power plants and transmission 
infrastructure, highways, bridges, water and wastewater treatment plants), whose repair and replacement costs 
would emerge as an issue. The lack of a comprehensive analysis of this risk, and its securitization mechanisms, is 
a considerable concern as the confluence of the increasing fragility of the dams, and the increasing risk of high 
precipitation events, manifests as a higher probability of failure and downstream impact. 

 

CASE STUDY 
 

The U.S. Army Corps of Engineers (USASE) managed dams in 
the Cumberland River Basin (CRB) were used as a case study to 
illustrate the application of the framework. The CRB extends in parts of 
Kentucky and Tennessee. The ten largest dams in the CRB are 
operated by the USACE as an integrated system, and their main 
purposes are flood control, electricity generation, and recreation. 
Elevations along the location of these dams range from 4,150 feet in 
the eastern headwaters to 302 feet at the Ohio River confluence 30.  

The configuration of the system of dams is shown in Figure 4. 
Wolf Creek Dam, Dale Hollow Dam, Center Hill Dam, and J Percy Priest 
Dam are arranged in a parallel configuration (i.e. there are no 
upstream dams), while Cordell Hull, Old Hickory, Cheatham, and 
Barkley dams are in series (i.e. there are dams upstream from them). 
The configuration of the dams’ system is relevant in the assessment of 
cascading failure as explained in the next section “Probability of 
Failure”.  
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Figure 4 Diagram of USACE dams in the 
Cumberland River Basin.  
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PROBABILITY OF FAILURE  
  

Our proposed approach for estimating the probability of dam failure considers its time-varying nature 
conditional on inter-annual and decadal climate variability and anthropogenic climate change, diminishing dam 
capacity due to sedimentation, and the structural fragility of the dam due to age and type of construction material 
(Figure 5). Simple functions were developed to show how each of these variables may be changing, and how they 
affect the reliability of a dam as it ages.  

 
Figure 5 Framework to assess the probability of failure. 
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 Recently there has been much debate about the idea that the 
assumptions of stationary climatic baselines for dam design  and 
operation may no longer be appropriate for long term projections of 
climatological parameters 34,35. It is argued that long-term climatic trends, 
river regulation, changes in runoff due to land use or other climate 
feedbacks, and sedimentation may make this assumption invalid 6,35,36. 

A variety of techniques have been developed to account for 
changes in the probability of flood events 35. One common approach is 
to use bias-corrected downscaled precipitation projections from global 
circulation models (GCMs), and hydrologic models to generate 
streamflow 7,18,37,38. However, these projections have many 
shortcomings39, potentially resulting in underestimations of future peak 
floods36,37. It has been proposed to use the large-scale climate circulation 
variables that GCMs are able to predict better to obtain regional extreme 
precipitation events, rather than obtaining the precipitation events 
directly from the GCM39. The use of statistical approaches with time 
varying parameters has also been proposed to allow changes in the flood 
distribution, either using the trend or large scale climate variables as 
covariates 40. Overall, this is an evolving field and there is still no 
consensus on the use of stationary (constant probability) or 
nonstationary (changing probability) assumptions for infrastructure 
design due to the uncertainty around them, unless obvious trends have 
been detected 35,41. The design of more flexible infrastructure (shorter 
time scale projections) has been suggested as the way to deal with the 
uncertainty of future climate42. To this day, the concepts of design life 
level and reliability are still the recommended design principles by 
government agencies36.  

We want to emphasize the relative importance of including short 
term or long term climate risks depending on the investment life or the 
operational life of dams. Inter-annual and decadal climate variability that 
can be identified and predicted is suitable for shorter term investment or 
design life, while anthropogenic climate change, which is expected to 
alter the occurrence of extreme events, informs longer time scales42, 
albeit with greater uncertainty.   

 

 

 

 

 

Probability of 
Overtopping 

 

1. Review regional drivers, models, 
and trends of flood events. 

 
2. Compare the return periods of 

extreme streamflow events 
using all the data currently 
available and the data available 
before a dam was built. 
 

3. Do trend analysis for the 
streamflow. Analyze the 
relationship between 
precipitation and extreme 
stream flows. 
 

4. Estimate storage losses due to 
sedimentation.  

 
5. Obtain the probability of 

overtopping (hydrologic risk) 
accounting for sedimentation 
losses.  

 
6. Estimate proxies for fragility 
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CLIMATE DRIVERS AND REGIONAL EXTREME EVENTS  
  

Understanding the underlying mechanisms and trends of regional extreme precipitation and floods is important 
to inform the spatial and temporal variation of the risk of overtopping of multiple dams simultaneously. Statistical 
climate models can help predict future conditions, and depending of the time scale needed, different models and 
predictors may apply.  

In our example we review two models developed for the Ohio River Basin (where the Cumberland River Basin, 
our test case, is located) related to the drivers and future projections of extreme precipitation and streamflow 39.  
One is intended for predictions of anthropogenic climate change, and the other assesses the probabilities of having 
very wet or dry regional conditions using historical data exclusively, representing inter-annual and decadal 
variability43. Similar models can be developed for other regions. 

 The Ohio River Basin has a history of recurrent large flooding events that have had high human and 
financial costs. The floods are generally associated with persistent, or heavy precipitation events, and snowmelt, 
and in less degree to changes in land use. Springtime extreme streamflow is driven by a persistent and strong 
circulation called the Bermuda High, which forces anomalous moisture transport from the gulf of Mexico and 
Tropical Atlantic39. To analyze the regional exposure to extreme precipitation days, Farnham et al., (2018) define an 
event as the days that at least 4 of the 15 sub-regions in the basin experience extreme precipitation (greater than 
the daily 99th percentile) and quantify the probability of such days conditional on five climate indices. They use 
1950 to 2005 as historical period, and 2006-2100 for future projections, and their Bayesian model propagates the 
parameter estimation uncertainties to the future simulations (longer time, more uncertain).  

Farnham et al., (2018) compare the results of their model with the common approach of bias corrected 
GCMs for precipitation and show how using the GCM-derived indices yield better results. Overall, an increase in 
regional extreme precipitation days in the flood season (March-April-May) is projected (Figure 6), which are 
closely related to extreme stream flows in the region (taking the Ohio River Basin as a whole). This is to show 
that the probability of having multiple dam failures within the same river basin may increase in the long term.  

 
Figure 6 Projections of regional extreme precipitation days in the Ohio River Basin. 

 Adapted from Farnham et al., (2018)39 with permission from the authors. 
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In another model (Amonkar et al, 2020)43 used streamflow gages from the Ohio River Basin to study the 
streamflow characteristics on a river basin scale. Site specific annual maximum streamflows were converted to 
binary values if they exceeded the 90th quantile, and aggregated across the river basin as count exceedance data. 
With their model, they estimate the average occurrence of Wet and Dry years in any 10-year period and the 
maximum persistence length of Wet and Dry years across a 30-yr period (Figure 7). This model is based purely on 
historical streamflow data. Models such as this could be used to update the likelihood of extreme precipitation 
events in the next year or 10 years and hence update the probability of dam failure, and the consequent 
prioritization of action or financial risk mitigation strategies. 
 

 
Figure 7 Occurrence and persistence of wet and dry years in the Ohio River Basin. Used with the permission of the authors 

 
These models help understand the extreme streamflow characteristics and future projections at a basin scale. 

In the next section we review the streamflow characteristics at the location of a dam to assess if extreme inflows 
have changed from the time the dam was designed. We then show how the probability of overtopping can be 
updated to reflect changes in streamflow sediment, and other environmental conditions affecting the stability of 
the dam materials.  
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Overtopping probability analysis part I: Changes in flood event recurrence  

The first step is to analyze if the return flood probability 
has changed from the time the dam was designed and built to 
the present.  This is to see if we can expect significant 
variations in the flow in the rest of the analysis. The log 
Pearson type III distribution was the recommended 
distribution for extreme flow analysis around the time when 
the majority of dams in the U.S were built, so we use it to 
compare the return periods fitting streamflow data pre-dam 
and post-dam. The U.S. Geological Survey (USGS) provides 
streamflow data from gages across the country and it can be 
retrieved with the programming language R using a package 
called dataRetrival.  

We used Wolf Creek Dam as an example with data from an 
operations manual44 but we want to note that assumptions 
were done in the reservoir discharges and elevations, so the 
results obtained throughout are for illustration purposes and 
do not necessarily resemble how the reservoir is actually 
managed. We retrieved the stream flow data available from 
before Wolf Creek Dam started operating (1940 to 1952). The  
mean daily stream flows of USGS gages in tributary streams 
contributing to the total dam inflow were added (examples of USGS gage locations for Wolf Creek Dam in Figure 8). 
In some cases, imputations were done using rank correlations with other upstream gages to complete the total 
streamflow time series.  

 
Figure 8 USGS streamflow gages in the Wolf Creek Dam subbasin 44. 

 

OVERTOPPING EMBANKMENT DAM. INFLOW EXCEEDS OUTFLOW

Image from: DAM-BREAK FLOOD MODELING/MAPPING USING DSS-
WISE™ LITE:STEP-BY-STEP INTRODUCTION WITH HANDS-ON 
EXERCISES, One-Day Short Course,  Module 2,  September 13, 2018, 
Washington State Convention Center, Seattle, WA
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 We fit the annual maximum of the resulting daily mean streamflow values with a log Pearson type III 
distribution (Figure 9 left). We did the same using the time series available now (Figure 9 right) and the 100 year 
return flood is 2% larger considering the whole time series; the 200 year return flood estimate is 5% larger.  

 
Figure 9 Return periods with log Pearson type III distributions. The dotted red lines on the right figure are the flow values 

corresponding to the 100 year and 200 year return periods in the distribution of the left. 
 

The next step is to fit the streamflow data to a more suitable distribution to assess the probability of 
overtopping, since we are interested in flood events exceeding a threshold value, which can occur more than once 
in a given year (as opposed to the log Pearson III distribution that uses only annual maxima), given that there can  
be substantial damages resulting from the second or third largest floods in extremely wet years 34. Partial duration 
series rather than peak annual floods are more suitable in such cases and the Generalized Pareto (GP) distribution 
45, is commonly used to obtain the return periods. The GP has three parameters: scale (β), shape (ξ), and location 
(u,	also known as the threshold). The cumulative density function is given by: 

𝐹!(𝑥) = 𝑃(𝑋 − 𝑢 ≤ 𝑥|𝑋 > 𝑢) = 𝐹",!,$(𝑥) =

⎩
⎪
⎨

⎪
⎧
1 − 71 +

𝜉(𝑥 − 𝑢)
𝛽 ;

%&"
, 𝜉 ≠ 0

1 − exp 7−
𝑥 − 𝑢
𝛽 ;					 , 𝜉 = 0

 

where β>0. When ξ>0 the Pareto distribution is applied, and when ξ = 0 it simplifies to the exponential distribution.  

The daily mean streamflow threshold (u) for the partial duration series was defined as the 1 in 2-year flood 
(i.e. the median of the annual series of maximum daily streamflows). During wet spells, several consecutive days 
can exceed the threshold so the events are not independent. We considered independent flood spell events as 
those that have a minimum of 8 consecutive days below the threshold in between them. We obtained the volumes 
as cfs-day of each flood spell by accumulating the flows in days that exceeded u and taking the maximum of the 
accumulated volume. Then the flood volume events exceeding u (referred as FV.) were fitted to a GP distribution. 
The exceedance probabilities and return periods of FV can be assessed with the density distribution (example for 
Wolf Creek in Figure 10).  
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Figure 10 FV time return periods for Wolf Creek 

Overtopping probability part II: Trend analysis 

The next step is to do a trend analysis to assess if the frequency and magnitude of FV events are increasing in 
the region. This can be done in different ways but here we use the Mann Kendall test to analyze the trend of the 
number of events exceeding u in one year.  We also do locfit regressions of the events exceeding u per year (coded 
as 1 if there were exceedances in that year and 0 if there were not) with time and CO2 as predictors.  

 None of the gages/total streamflow series in the Wolf Creek example showed a significant trend with the 
Mann Kendall test. A change in trend was evident when CO2 emissions was used as the predictor (with CO2 
emmissions datataken  from the Primary Mauna Loa CO2 Record available at Scripps; Keeling et al., n.d.), taking off 
after 380 ppm. So for future estimations of streamflow return periods, CO2 can be used as a covariate to introduce 
the trend in the β	and u parameters of the GP distribution. 	 

Precipitation – FV analysis.  
 

Another way to predict changes in the future return period of FV, is to use precipitation predictions based on 
the relationship between precipitation and FV. The precipitation- FV dynamic can be approximated with detailed 
hydrology models or simplified versions. Decadal precipitation predictions can be obtained from probabilistic 
models and longer term precipitation projections can be estimated from climate-driven models using GCM derived 
global circulation predictors, as discussed in the Climate Drivers and Regional Extreme Events section. 

Overtopping analysis part III: Sedimentation 

As dams fill with sediment, the available storage is reduced (a diagram of a generic dam configuration is 
provided below for clarity). Dams that have controlled discharges may have a lower hydrologic risk due to 
sedimentation provided that outlets are not blocked with sediments. This is because dam managers maintain the 
dam level at safe conditions. However, the frequency of reaching flood level in a dam (this is a high level in the 
dam) may increase, which can increase the probability of overtopping. In dams that do not have a controlled 
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discharge, the effect of sedimentation increases the risk of overtopping as the dam fills and less volume can be 
contained, plus the potential outlet blockage. 

 

The probability of reaching or exceeding a given reservoir elevation is key when analyzing the risks of 
overtopping; this defines the probability distribution of the free storage. Reservoir elevation curves can be used to 
assess the probability of overtopping or the probability of reaching the spillway crest, which can result in erosion. In 
these curves, the volume than can be stored at each elevation is known, allowing for the calculation of the available 
storage volume 𝑉'()) as the difference of the volume at the maximum elevation of the dam 𝑉(𝑒'*+) and the  
volume at a defined elevation 𝑉(𝑒,):  

𝑉(𝑒'*+) − 𝑉(𝑒,) = 𝑉'()) 

The effect of sediment buildup can be included in the analysis of the probability of overtopping by updating the 
dam elevation-storage curves using estimates of storage rate loss. Then the probability of reaching a “dangerous” 
dam elevation given inflows to the reservoir is updated. 

In our example, Wolf Creek’s elevation-storage curves and elevation-discharge curves included in the operation 
manual were done in 1949 and the dam started operating in 1951. A yearly storage loss rate was estimated with 
data from siltation survey of 87 dams across the U.S (RESSED database, also explained in the introduction). We took 
the median (0.12%/year), Q25 (.09%/year), and Q75 (0.25%/year) of the SLR across the country. Considering this 
SLR and the age of the dam, the current storage in 2020 could be between 6.5- 18% smaller than the original. We 
take the median value using a SLR of 0.12% to adjust the initial elevation=storage curves showing how for the same 
elevation, there is less storage now and how the storage will be affected by the time the dam is 100 years old in 
2051 (Figure 11). Therefore, the probability of being at flood elevation has shifted and will keep increasing as more 
sediment is deposited.  

Dam diagram. Taken from: DAM-BREAK FLOOD MODELING/MAPPING USING DSS-WISE™ LITE:STEP-BY-STEP 
INTRODUCTION WITH HANDS-ON EXERCISES, One-Day Short Course,  Module 2,  September 13, 2018, Washington State 
Convention Center, Seattle, WA
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Figure 11 Elevation-Storage curves in 1948 and estimated in 2020 and 2051 adjusting for sedimentation. 
 

If the time series of reservoir elevations is not available, we can simulate them with the elevation-storage 
curves, the daily inflows, and the elevation-discharge curves. A threshold exceedance analysis then follows (as the 
one done for 𝐹-) to obtain the elevation return periods. In our example we set the threshold as the initial elevation 
for the flood control pool (i.e. the top of the hydropower pool). The resulting elevation return periods with the 
2020 elevation-storage curve are shown in Figure 12. Note that we had to make some assumptions regarding the 
discharges and inflow so the curve likely underestimates the reservoir levels at each return period, but the purpose 
of the example is to illustrate how to apply the methodology.  

 
Figure 12 Elevation return periods obtained with the estimated daily inflows, and the updated elevation-storage curve. 
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Overtopping analysis part IV: Probability 

Now we combine the return inflow volumes 𝐹-, the elevation return periods, and the available storage at 𝑉'()) 
at different dam elevations to estimate the probability of overtopping.  

The probability that inflow 𝐹-  equals or exceeds the available storage 𝑉'())  considering the discharge of the 
spillway, gates and other outlets at the defined initial elevation 𝐷(𝑒.) (obtained from elevation-discharge curves) is 
given by: 

𝑃(𝐹- ≥ 𝑉'()) + 𝐷(𝑒.)) 

So one can compute the minimum 𝐹-  needed to exceed 𝑉'()) + 𝐷(𝑒.)  at different elevation scenarios (𝑒.) and 
assess the probability of exceedance using the cumulative density function of 𝐹-  previously obtained.  In our Wolf 
Creek example, this leads us to the return periods for shown in Figure 13 ( we want to clarify that this is an example 
and many assumption were made for the dam discharges). Note that the return periods will be higher when the 
initial elevation is lower because the dam has more free storage available and therefore 𝐹-  needs to be larger to 
exceed the capacity.   

 
Figure 13 Return periods for 𝑭𝑽 ≥ 𝑽𝒅𝒊𝒇𝒇 +𝑫(𝒆𝒔) at selected  starting elevations. 

The risk of failure quantifies the likelihood of experiencing a failure at least once in a given period of time 
(usually evaluated using the design life of the dam). The risk of failure R is related to a return period T, and is 
described as47: 

𝑅 = 1 − (1 − 𝑝)/ = 1 − 𝑞/ = 1 − (1 − 1 𝑇⁄ )/ 

where n = design life of the dam, p is the probability of exceedance and q is the non-exceedance probability47 . The 
return period T (or the probability of exceedance) does not depend on the life of the structure, but R does. For 
example, the chance of having at least one event in 30 years for the 1 in 100-year flood (p=.01) is 1-(1-.01)30, which 
equals 26% chance. We calculate the probability of exceeding Vdiff  at different reservoir levels at least once in a 
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period n. In the example we take n as 72 years (current age of the dam) and 100 years (common design life). The 
results are plotted in Figure 14. This can help determine the water level maintained in the reservoir.  

 
Figure 14 Hydrologic Risk in % of design life=72 and 100 (R72 and R100 respectively) considering changes in sedimentation. 

 
We can also estimate the joint probability of 𝐹- ≥ 𝑽𝒅𝒊𝒇𝒇 +𝑫(𝒆𝒔) and the dam being at elevation (𝒆𝒔). These 

events are likely not independent as a very wet season may cause the dam to already be at high levels when the 𝐹-  
occurs but for simplification here we treat them as such. The joint exceedance probability is given by the 
multiplication of the probability of exceedance of the elevation and the inflow: 

𝑝 = 𝑃 P𝑒. ∩ 𝐹- ≥ 𝑉'()) + 𝐷(𝑒.)R = 𝑃(𝑒.) ∗ 𝑃(𝐹- ≥ 𝑉'()) + 𝐷(𝑒.)) 

We consider the same n periods as in Figure 14 and the elevation probability distribution from Figure 12. The 
resulting hydrologic risk is a lot smaller when the elevation probabilities are considered,  since the probability of 
being at high reservoir elevations is very small (Figure 15). 

 
Figure 15 Hydrologic risk accounting for the probability of the elevation 
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Risk analysis part V: Structural Fragility 

Dam structures can deteriorate as the properties of their materials and their foundations change over time48. 
As the dam weakens, there will be a time when it is unable to withstand static, flood induced, or earthquake 
loadings 49. The structural characteristics of a dam depend on the material of construction and design, and are 
affected by physical and chemical environmental processes.  

In general, dams are classified as embankment 
dams or concrete dams. Embankment dams are 
made mainly of rock and soil and have lower 
construction costs than concrete dams but they 
are more likely to fail by overtopping11. As the dam 
overtops, the material erodes until there is 
complete failure. These dams are also prone to 
seepage, piping, and internal erosion, all of which 
involve complex mechanisms. Insufficient 
drainage, corrosion of outlet pipes, deformation 
and settlement of the materials, surface erosion, 
loss of strength due to improper compacted fill or 
cycles of wetting and drying/freezing and thawing (i.e. leading to cracking and slope instability), vegetation, and 
animal activity can all lead to structural failure. Internal erosion is the most common aging scenario for the 
foundation of earth and rockfill dams, and it is a process that may remain undetected for a long time without the 
proper monitoring 50.  

Concrete dams can be gravity, arch, or buttress dams. Regardless of the type of concrete dam, their stability 
highly depends on the strength of the concrete (which can deteriorate as the dam ages) and on the strength and 
stability of the foundation and abutments. For concrete dams, failure by overtopping means sliding or overturning 
of the whole structure due to erosion of the abutments and foundation 11. Several phenomena can result in 
structural failure and their characterization is not trivial. Failure probability in these cases can be a function of 
multiple variables such as the dam’s height and width, the material of construction, the slope, the foundation type, 
and many others. The failure models can be quite complex and specific for the different structural failure modes.  

A fragility analysis would therefore entail access to very detailed information for each dam, which is out of 
the scope of the general framework proposed for a preliminary identification of risky dams. However, 
considering that wet-dry and freezing-thawing cycles are potential stressors for the structural integrity of 
embankment and concrete dams respectively  50–52, and that climate information is available, we created a simple 
index based on historical climate data and in future climate scenarios to represent structural fragility related to 
these cycles. Ice expands about 9 percent upon freezing, causing forces of up to 30,000 lb/in2, which is sufficient to 
crack concrete if it is not protected against this action 52. Dry-wet cycles can affect seepage behavior in 

In this section we showed how to obtain the probability of overtopping considering changes in inflow 
(climate driven) and storage capacity due to sedimentation (age driven). In the next section we show 
how to include some elements of age-related structural fragility in the analysis.  

Concrete Arch dam failure. Image from: DAM-BREAK FLOOD 
MODELING/MAPPING USING DSS-WISE™ LITE:STEP-BY-STEP INTRODUCTION 
WITH HANDS-ON EXERCISES, One-Day Short Course,  Module 2,  September 
13, 2018, Washington State Convention Center, Seattle, WA
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embankment dams. Severe droughts can originate cracks, which become channels of infiltration into the dam 
during the wet cycle. This increases the chances of internal erosion and reduces dam stability 51. A rapid drawdown 
of a reservoir can result in failure51. Therefore, we take the number of freeze-thaw cycles (F/T) and the number of 
wet-dry cycles (W/D) as a proxy for the probability of having structural deterioration in concrete and 
embankment dams respectively. 
 

The earliest concretes used in dams failed in about 50 to 100 F/T cycles (dams constructed unitl about 1945); 
modern frost resistant concrete normally withstands more than 1,000 cycles of F/T 52. We consider the probability 
of experiencing more than 100 F/T cycles in the design life of a concrete dam if it was built prior to 1945 and 
1000 cycles if it was built after that. This probability could change due to climate change, so GCM temperature 
projections, which are known to be more accurate than precipitation projections, can be used. In embankment 
dams, the threshold is related to the number of wet-dry cycles (W/D). Wet-dry cycles in seepage analyses are 
normally defined as the process from dry to saturated and from saturated to dry53, where the saturation refers to 
the material of construction. With increasing number of wet-dry cycles, irreversible damage accumulates in the 
material, resulting in degradation of physical and mechanical properties53.  

 

Wet-Dry Cycles 
 

To estimate the W/D cycles we use the Standardized Precipitation Evapotransporation Index (SPEI), which takes 
into account both precipitation and potential evapotranspiration in determining drought 54. The SPEI can be used 
for determining the onset, duration, and magnitude of droughts. The average value of the SPEI is 0, and the 
standard deviation is 1. SPEI values <-1 indicate a condition of drought, the more negative the value the more 
severe the drought; values >1 indicate more humid conditions compared to normal. When the SPEI has a value 
between -1 and +1 the situation is identified as normal. In Figure 16 we use -1.5 and 1.5 to indicate extreme wet or 
dry periods in the 12-month SPEI index.  

 
Figure 16 12-month SPEI index at Wolf Creek Dam (left). The horizontal dashed lines indicate drought conditions or above 

normal wet conditions. Number of months per year in wet or dry conditions (right). Data was retrieved for Wolf Creek Dam 
from http://spei.csic.es/database.html#p1.  

 
We calculate the probability of W/D cycles as the ratio of the number of times conditions switch from wet to 

dry or dry to wet in the period of record, considering dry as SPEI12< -1.2 and wet as SPEI12 > 1.2 
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In the example, the probability of experiencing a W/D cycle (dry-wet plus wet-dry occurrences) in any given 
year is 12% taking the whole dataset. If only the years after 1950 are considered, the probability increases to 13.8% 
showing an increase in the frequency of such events. The dam has experienced 9 W/D cycles in its operating 
lifetime (with different intensity of drought and wet conditions). The probability of experiencing at least one more 
event in the next 10 years is 77%, so it is very likely that the dam will be exposed to more W/D cycles in its 
remaining operating life. Any new event can potentially lead to a dam failure, unfortunately we don’t have the 
data to calculate the conditional probability of failure given that there was a W/D cycle, but at least obtaining 
this probability helps compare exposure across different dams.  
 

Freeze-Thaw cycles 
 

The frequency of F/T cycles, and therefore their probability of occurrence, can be obtained from temperature 
datasets and GCM temperature projections. The process is the same as for W/D cycles but in this case, the 
exceedance event that matter is to surpass 1,000 F/T cycles in the life of the structure 52.  

 
In our example, daily temperature was obtained from the ERA Interim Reanalysis available at KNMI 

(https://climexp.knmi.nl/start.cgi) and temperature anomalies were retrieved from the NOAA Global Surface 
Temperature Dataset. The temperature has an upward trend in the last 25 years (Figure 17), and the area does not 
experience F/T cycles (temperatures do not go near or below freezing), so there is no risk of structural fragility due 
to this failure mode. As for the W/D cycles, obtaining this probability  

 

 
Figure 17. Temperature from ERA Interim Reanalysis-left. Temperature anomalies from NOAA Global Surface Temperature 

Dataset-right 
 
W/D cycles are likely correlated with flood events so their joint probability should be considered for more in 

detailed analyses.  
 

Overtopping analysis part VI: Portfolio Risk 

As explained in the Climate drivers and regional extreme events section, many dams located within a region 
may experience extreme climate events simultaneously. Therefore, the probability and consequences of their joint 
failure need to be considered in a portfolio risk assessment.  
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Dams that are in parallel (i.e. there are no other dams upstream from them), may or may not experience an 
overtopping event simultaneously, with a certain probability. For such dams, the probability of two or more 
experiencing an overtopping event can be derived based on regional precipitation and streamflow data, and used 
with the potential probability of failure by overtopping, to assess the joint probability distribution of failure of 
multiple such dams. For example, for two dams A and B in parallel in the same region, treated as non-independent 
events the probability that both of them fail is given by: 

𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴|𝐵) ∗ 𝑃(𝐵) 

For dams in series, the conditional probability of overtopping of the downstream dam, given that one or more of 
the upstream dams has failed (or not) is needed. So for dams A and B that are in series the probability that A fails 
given that B fails (A is downstream of B) is given by: 

𝑃(𝐴|𝐵) =
𝑃(𝐴 ∩ 𝐵)
𝑃(𝐵)

 

Once these probabilities are estimated, all the potential failure pathways in the portfolio can be examined, and the 
probability and the potential loss associated with each pathway can be scored to derive a probability weighted 
measure of portfolio risk. Within the portfolio, the network links that contribute the highest expected loss can be 
identified.  The framework for quantify losses is reviewed in the next section. Assessing the financial consequences 
of dam failures 

ASSESSING THE FINANCIAL CONSEQUENCES OF DAM FAILURES 
 

In this section we review approaches to quantify the potential financial consequences and damage to 
critical infrastructure caused by dam failures, and describe the proposed methodology with examples of dams 
located in the Cumberland River Basin. We propose seven decision criteria encompassing the direct economic 
losses including dam replacement costs, potential damages to critical infrastructure such as power plants, electric 
substations, wastewater treatment plants, roads, railroads, navigation routes, and facilities containing hazardous 
materials, and the population affected (Figure 18). The framework uses publicly available dam break and 
consequence tools developed by the US Army Corps of Engineers and FEMA, and national infrastructure datasets.  
In particular, we use the Decision Support System for Infrastructure Security Lite (DSS-WISE™Lite) to estimate the 
inundated area, and FEMA’s Hazard-US (HAZUS) software to estimate the direct financial losses.  

We also show how the inundation area from a dam failure can exceed the flood insurance rate maps 
(FIRMS) estimated 1 in 100-year and 1 in 500 year event floods.  

The application of the framework could be the creation of a national dam hazard map to complement 
FIRMS and allow the identification of “hot spots” beyond the current dam hazard classifications using the analytic 
hierarchical process (AHP) as a ranking method.  
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Figure 18 Risk analysis: Assessing the consequences of failure 

 

DAM HAZARD CLASSIFICATION INCLUDING FINANCIAL AND INFRASTRUCTURE RISKS 
 

In general, the characterization of probable loss of human life in dam hazard classifications is clearer than 
the potential economic losses and critical infrastructure damage. This is partially due to the accessibility to 
demographics data and because loss of life is an immediate priority in hazard classifications (as it should be). 
However, the financial impacts of a dam failure can be quite significant, and these are heightened in extreme 
events, as other critical infrastructure can fail. In October 2015, South Carolina (SC) experienced an estimated 1 in 
500 year storm event 55, and 36 small dams failed as a result of the storm 56. The subsequent flooding due to the 
storm and dam failures resulted in 19 deaths, the closure of all highways in Columbia, and the closure of 120 km of 
the critical north-south Interstate 95 highway that connects the east coast of the US.  Nearly 30,000 people were 
without power and damage losses were estimated at US$1.5 billion 56.  

Multi-criteria decision analysis (MCDA) techniques have been proposed to improve dam hazard 
classifications, since they can include variables expressed in different units (monetary, impacted population, 
damaged infrastructure, etc.)57–59.  MCDA models rank decision options based on a set of evaluation criteria and the 
importance of each criterion is represented by weights usually elicited from experts or stakeholders 60, and 
summarized in a decision matrix. The weighted sum method (WSM) is a simple and often used MCDA technique 
61,62, where a score is calculated multiplying the performance criteria value by the criteria weight and all the 
weighted scores are added. Criteria weight assignment often relies on expert opinion57 and a sensitivity analysis is 
needed to test for rank reversal. The analytic hierarchy process (AHP)63 is the most popular  MCDA technique in the 
academic literature for dam risk ranking 59, integrating quantitative and qualitative measures,  and personal 
preferences in performing  decision analyses. This technique is similar to WSM, but AHP uses the relative 
importance of the alternatives in terms of each criterion to hierarchically structure single or multi-dimension 
decision making problems 57.  
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Our framework uses AHP for dam hazard ranking using seven criteria (Figure 18). AHP requires normalized 
performance values so the data is transformed into dimensionless values, and summarized into a decision matrix. 
The performance values are normalized vertically so the elements of each column in the decision matrix add to 
one. The decision matrix is organized in j columns (criteria) and i rows (dams). The normalized matrix (n.m) was 
obtained as follows: 

n.m =
minY𝑥4Z − 𝑥(4

minYx5Z − max	(x5)
 

where j is a criterion and i is a dam. This way the dams that score higher in the criteria have a higher normalized 
score. For the weighted matrix, the weights across the criteria need to add to one. We used the following criteria 
and assigned equal weight to each of them: 
 

 
We acknowledge that there are some known issues with AHP and all MCDA methods, related to the 

uncertainty in the weights assigned, the independence of the criteria, and rank reversal issues 64,65 . MCDA requires 
sensitivity analyses of the weights, but they generally involve systematically varying one parameter over their 
entire range while keeping the others constant; therefore the combined effects of different parameters cannot be 
determined 65. Weights are normally assigned by experts and decision makers.  

Criteria estimation 

Inundation area 
 

First we need to estimate the inundation area of a dam failure and the depth at different points. There are 
many software products available to do this 27,66. In the U.S., the Hydrologic Engineering Center River Analysis System 
(HEC-RAS) and the more recent DSS-WISE™Lite are popular publicly available tools to do such analyses. HEC-RAS 
requires detailed inputs and expertise but it is more flexible and accurate than DSS-WISE™Lite, however, DSS-
WISE™Lite is much faster 67. In the framework presented here, DSS-WISE™Lite is used to estimate the dam inundation 

C1-DIRECT ECONOMIC LOSSES - Includes the depreciated replacement costs of residential, industrial, 
commercial, government, religious, and agricultural infrastructure, and the dam replacement cost.  
 
C2 -ECONOMIC RISK OF INFRASTRUCTURE – Number of utilities with damages greater than 40% including 
wastewater treatment plants (WWTP), power plants (PP), Airports (Air), and electric substations (ES).  
 
C3-MILES OF MAJOR ROADS AND RAILROADS – Obtained from national datasets. This estimation does not consider 
the inundation depth. 
 
C4-TONS/DAY OF COMMODITIES IN AFFECTED NAVIGATION ROUTES – obtained from national datasets. 
 
C5- NUMBER OF OTHER DAMS AND SITES WITH POTENTIAL HAZARDOUS WASTE defined under the Resource 
Conservation and Recovery Act (RCRA) referred as RCRA sites.  
 
C6 -AFFECTED POWER GENERATION IN MEGAWATTS – obtained from national datasets. 
 
C7-AFFECTED POPULATION – obtained from the human consequence module included in DSS-WISE™Lite. 
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areas and losses because it is more appropriate for our scope, which requires the analysis of multiple dams where 
limited information is available. DSS-WISE™Lite was developed by the National Center for Computational 
Hydroscience and Engineering at the University of Mississippi on behalf of USACE 68.  

A downside of using DSS-WISE™Lite is that it does not allow modelling cascading failures so we could not 
include them in our framework. However, an approximation of potential overtopping of downstream dams was 
included in the hazard characterization by counting the dams that are located within the inundation area of a failed 
upstream dam. This could also inform the probability of failure of dams in series discussed in the failure probability 
section. For sequential dam failure FEMA’s guidance recommends that the hazard potential classification of the 
upstream dam must be as high as or higher than any downstream dams that could fail as a result of the upstream 
dam’s failure. However, there are cases where both upstream and downstream dams are classified as High hazard 
just based on the potential population affected, so the risk of the cascading failure is not visible.  

The starting dam pool elevation in the example dam break simulations is the top of flood pool level (i.e., 
the dam is at capacity). Consistent with the overtopping scenario, we would like to simulate a starting condition of 
flood stage downstream of the dam but this is not currently possible in DSS-WISE™Lite, as it only simulates sunny 
day failures. The tool does not simulate backwater either. Therefore, the resulting inundation area is a 
conservative estimation in situations when a region is at flood stage prior to the failure.  Two types of failures 
were modeled: sudden and complete failure labeled as S1, and partial failure using parameters for breach 
formation from empirical equations69 labeled as S2.  

Losses 
 

To calculate the direct economic losses (C1) we used infrastructure datasets and depth-damage curves included 
in the software HAZUS. HAZUS is a publicly available model developed by FEMA to estimate the financial 
consequences of floods at the census block level, but it is computationally intensive70. Given the national scale we 
want to achieve, we extracted building databases and depth-damage curves contained in HAZUS, and performed 
the loss analysis externally using the programming language R to speed up the process.  

HAZUS has a nation-wide inventory of buildings, referred as general building stock or GBS. The database has 
many assumptions; for example, exact locations of the buildings in HAZUS’ GBS are unknown, and buildings are 
uniformly distributed at the census block level, but it is the best available at a national scale. The database contains 
the depreciated infrastructure replacement cost in million USD, allowing the estimation of direct losses depending 
on inundation extent and depth using depth-damage curves. The results presented in our direct loss criteria C1, are 
point estimates in million dollars aggregated by occupation type: residential, commercial, industrial, education, 
government, and religious. 

C1 also includes dam replacement costs, and these were approximated with a function of cost-storage used 
for hydroelectric dams,71 assuming USD$ 1,294 per acre-ft. We acknowledge that the cost approximation per 
storage volume is highly uncertain, but this gives indication of the order of magnitude of the costs for replacing the 
dams.  

The infrastructure percent damage estimations in criterion C2 (economic risk of infrastructure) consider the 
lower bound of inundation depth from DSS-WISE. The number of utilities with damages greater than 40 % 
characterize infrastructure with high potential financial losses.  Criteria C3 to C6 do not take into account 
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inundation depths and the reported numbers only consider the number of locations, electricity generation 
capacity, and commodities transported that could be affected because they are within the inundation zone. For C3 
and C4, the losses related to interruptions in commodity trading can be roughly estimated with data from the 
commodity flow survey (CFS) collected periodically by the US Census Bureau in cooperation with the Bureau of 
Transportation Statistics, US Department of Transportation  72.  This analysis cannot differentiate exactly by the 
name of the damaged road or railway nor includes damage related to inundation depth, but it serves as a coarse 
estimate of what is at stake for transportation in a region.   

TEST CASE RESULTS  

Hazard Classifications 

In the example, the failure of J Percy Priest Dam scores higher across the criteria because of its proximity to 
the city of Nashville (Figure 4), however some criteria such as the dam replacement cost, impacted megawatts, and 
the presence of dams within the inundation area are higher for other dams (results shown in Figure 19).  

The final hazard ranking in descending order is J Percy Priest, Center Hill, Cordell Hull, Old Hickory, and Dale 
Hollow Dam, assuming equal weights for the criteria. This ranking is sensitive to the chosen weights and a 
sensitivity analysis on the weights could be performed. 

Analysis of losses using FIRMs (1 in 100 years and 1 in 500 years) and Percy Priest failure in Nashville 

The objective of this analysis was to put into perspective the differences in damages and insurance needs 
included in the flood inundation rate maps (FIRMs) and those resulting from a dam failure. In the example, we 
constrained the analysis to the boundaries of Nashville’s Urban Service Districts for comparison purposes, given 
that it is the largest urban area in the test case region. The infrastructure within the FIRMs (1% and 0.2% return 
floods) in Nashville was compared with the inundation area of Percy Priest’s Dam failure plus the FIRMs areas.  This 
analysis only considers the C2-C6 consequences. The flood insurance rate maps obtained for Kentucky did not 
include flood depth for most of the areas, so in this crude comparison we only take into account the number of 
facilities within the inundation zone without estimating damages as a function of inundation depth.  It is evident 
from the results in Table 1 that the potential damage in electricity supply, WWTPs and losses associated to 
commodity trading in impaired navigation routes could be much greater than the FIRM maps alone. The exposure 
of RCRA sites, electric substations, and damaged miles of major roads and railroads is also greater. The commodity 
most impacted would be coal (Table 2), which in turn could affect other sectors. This shows that damages incurred 
by the failure of Percy Priest dam would be greater than those considered in the FIRM zones, which could likely be 
uninsured.  
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Figure 19 Consequence estimation results  
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Table 1 Infrastructure affected in Nashville in different inundation scenarios 

Inundation Extent MWs WWTPs 
Roads  
(mi) ES 

Railroad 
(mi) 

RCRA 
sites 

Tons/day in 
Navigation 

route 
DFIRM 100 year flood 0 16 2.3 6 6 1 0 
DFIRM 100 year flood 0 28 4.3 12 14 4 0 
DFIRM 100 year flood and Percy Priest 
Dam 33.8 52 7.8 14 20 6 

               
53,987  

DFIRM 500 year flood and Percy Priest 
Dam 33.8 54 8.4 16 21 6 

               
53,987  

*MWs=Megawatts, WWTPs=Wastewater treatment plants, ES=Electric substations, RCRA=hazardous sites 

Table 2 Commodities (in ton/day) transported in the affected navigation routes in Nashville in case of failure of Percy Priest.  
Coal Petrol Chem CrMat Man Farm Mach 

                             
37,674.6  

        
724.5  

     
1,020.1  

     
9,864.4  

     
2,466.0  

     
2,236.8  

             
0.4  

*Chem=Chemical materials, CrMat=Construction materials, Farm=agricultural products, Man=Manufactured goods 

 

ASSESSING FINANCIAL RISK  
 

During the course of the project, we were able to provide a foundation as well as example applications for 
how dam failure risk could be quantified, and potential asset and life loss risks identified using publicly available 
sources of data. Time and personnel resource constraints prevented us from integrating the results into a regional 
financial risk estimation strategy. The process pursued for impact assessment does provide a basis for the direct 
loss assessment in the event of a dam failure. However, it does not yet consider indirect economic impacts, 
through for instance, the loss of transportation or energy or water infrastructure, or the closure of areas due to 
the spread of toxic waste from repositories in the flood plain to downstream communities and ecosystems. Such 
impacts can be, in theory, assessed through regional economic models subject to shocks. The development of such 
models for climate change impact analysis has been pursued to an extent 73–76. However, specific risk factors 
related to hazards are typically resolved at a rather macro level, and may be grossly underestimated. In a sense, our 
work to date provides an approach for the bottom up generation of information as to hazards that could be used 
in such integrated assessment models.  

Significant uncertainties are associated with the dynamics of climate, the presentation of climate hazards, 
and the manner in which they are manifest. Consequently, a bottom up consideration of such hazards in economic 
analyses is rare. However, it is also clear that the short and long term financial effects of hazards and their climate 
dependence need to be properly considered to quantify the dual effects of aging infrastructure on changing 

In this section we presented a framework to estimate some of the financial and social consequences of a 
dam failure and showed how they can be larger than those considered in the flood insurance rate maps or 
FIRMs.  

In the next section we discuss how other indirect losses could be quantified and included in the 
estimation of regional financial risk of dam failures.  
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regional populations and economies. As climate adaptation efforts advance, having a prioritized approach to 
regional investment and renewal, and to appropriate financial risk mitigation strategies will emerge as a priority. 
We are keen to advance our work in this direction and extend the foundation and examples developed in this 
report to present an economic and financial risk modeling strategy in this regard.  

NEXT STEPS (TO EXTEND THE CURRENT PROJECT) 
 

MODEL DEVELOPMENT: 
 

The basic building blocks for a model that could estimate direct losses from dam failure were developed 
and tested in the project. The extension of these into a comprehensive catastrophe model that could provide a 
stochastic catalog of loss for use with parametric financial instruments for risk management or for traditional 
insurance type of applications is now feasible, and this is an application we are interested in pursuing.  

Most of the existing research on the indirect impacts of natural disasters builds on the predictions of 
input-output (I-O) and computable general equilibrium (CGE) models. In both cases, a multi-sectoral accounting 
approach is utilized that builds a matrix for money flows across different sectors of the economy for perturbations 
of the state of any one of the sectors. For the I-O models the coefficients of such matrices are calibrated to 
historical data and are time invariant, representing static production functions, and attempt to predict how 
damages in one sector will propagate through production and trade to other sectors. The CGE models are similar 
but consider stable demand and supply functions and predict how the price, supply and demand across sectors may 
evolve. In our view such models are useful to get a directional estimate of the potential indirect impact, but are 
not well suited for the dynamic impact of hazards.  

 

 

CLIMATE EXTREMES DAM FAILURE REGIONAL FINANCIAL EXPOSURE
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data, maintenance, current physical 
conditions
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(very time consuming)
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Infrastructure replacement costs 
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Scenario analysis of economic 
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Cost of inaction
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Given the temporal dimensions of the hazard and the subsequent economic re-adjustment, systems 
dynamics models, in conjunction with a Bayesian structure for information and uncertainty flow could provide a 
novel approach to propagating a risk framework associated with dam failure risks into the economy. The 
intention would be to include both the dimensions of hazard induced loss, and economic growth in selected 
sectors that benefit from reconstruction and relief activities. An interesting speculation in this regard is the degree 
to which the hazard could induce a transition to a radically different form of infrastructure, e.g., a destruction of a 
thermo-electric power plant may stimulate replacement by renewable solar or wind generation facilities, which in 
turn require very different quantities of water, transmission, energy storage and technical labor markets. Likewise, 
regional economic development plans could be stimulated or adversely impacted by the hazard. The bottom up 
approach to information propagation at the regional scale, with an appropriate consideration to external 
linkages could then provide a paradigm for Integrated Assessment Modeling in the context of Climate Change 
Adaptation.  

DATABASE DEVELOPMENT: 
 

We would like to develop the necessary databases to build a platform to map the changing risk profiles 
associated potential dam failures across the United States, using the bottom-up framework presented in this 
report, and expanding it to the comprehensive catastrophe model escribed previously. Below is the data needed, 
data available, and gaps that we have detected:  

Data needed for probability estimation 

 
- Dam inflows- Inflows can be approximated with the contributing streamflow using USGS gage data. This is a 

time-consuming process and there might be many missing data points in the streamflow time series. Large scale 
hydrology models such as VIC can also be used but the generated streamflow carries large uncertainty and does 
not consider the impact of regulated flows.  

 
- Dam operational data such as elevation (or storage) time series, storage-elevation curves, and discharge-

elevation curves. This is needed to estimate the return period of the elevations. Operational data may be 
available in operations manuals of dams managed federally (such as the ones managed by USACE), and 
obtaining them is a time-consuming process. Operations data of private dams is harder if not impossible to 
obtain and several assumptions need to be made.  

 
- Storage rate loss due to sedimentation. Can be coarsely estimated with the RESSED database. For dams already 

included in the database, storage loss can be more accurately estimated.  
 
- Climate models – Regional climate models of precipitation and temperature can be obtained from the literature 

or developed for regions where they are not available. These models can be medium term (i.e. yearly and 
decadal) or based on GCM projections to account for climate change. The identification and development of 
such models for the whole U.S. is needed. 
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- Maintenance, inspections, and overall conditions of dams. The NID has related information but it is not released 
to the public due to safety concerns. The Associated Press did a study revealing that the conditions of thousands 
of dams across the U.S. are unsatisfactory but the data was not released when requested.  

 
Data needed for consequence estimation 
 

- Critical infrastructure locations, capacity, and population served. Data from different sources needs to be 
compiled, and there is great variability in the information provided from each source. Also, there are some 
significant data gaps at the national level; for example, there is no national database of drinking water utilities 
so it needs to be created. Estimations of the demand (where applicable), population served, and most 
importantly, functions to translate their interruption to indirect economic losses are needed to feed into the 
economic loss models discussed previously. 

 
- Dam services. Currently the NID has information for the primary purposes and other uses of dams but there is 

no data about the users or beneficiaries of the dam services (e.g. volume of water for public supply, industries, 
type of industry, and agriculture). For hydroelectric dams, the electricity generating capacity is included in the 
NID database but not who is served (i.e. if it is industry, what type of industry, domestic, etc.). Some dams have 
studies about the economic benefits provided by the dams, but are mostly related to flood control. Having 
more detailed information on the users and dam services demand would help estimating the indirect losses in 
case of failure. 

 
- Locations of hazardous sites, volume, and toxicity of the materials contained. There is information about the 

locations of hazardous sites as defined by the RCRA, but the volumes and toxicity of the materials contained is 
not available nationwide. Information on health and environmental impact and their translation into indirect 
economic losses is also needed to inform the economic loss model.  

 
- Transportation routes. Information of transportation routes at the national scale is available. However, we 

would like to create databases of the major trading routes, trading traffic, and estimate the value of goods 
transported per day. This database would also inform the economic loss model.  

 
- Building inventories and their updated replacement costs. Currently HAZUS database is the best nationwide 

although as mentioned earlier, it relies on many assumptions and can have outdated information. However, 
attempting to develop a new database would be a major undertaking. 

Financial and Economic Data  

- Market impacts from the extended loss of dam services.  
- Impacts across sectors due to flood damage and loss of critical services and infrastructure. 
- Impacts on jobs (losses and job creation in new sectors) 
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