
Distributionally Robust Performance Analysis
with Applications to Mine Valuation and Risk

Christopher Dolan

Submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2017



c© 2017

Christopher Dolan

All rights reserved



ABSTRACT

Distributionally Robust Performance Analysis with
Applications to Mine Valuation and Risk

Christopher Dolan

We consider several problems motivated by issues faced in the mining industry. In recent years,

it has become clear that mines have substantial tail risk in the form of environmental disasters,

and this tail risk is not incorporated into common pricing and risk models. However, data sets

of the extremal climate behavior that drive this risk are very small, and generally inadequate for

properly estimating the tail behavior. We propose a data-driven methodology that comes up with

reasonable worst-case scenarios, given the data size constraints, and we incorporate this into a real

options based model as in [10] for the valuation of mines. We propose several different iterations of

the model, to allow the end-user to choose the degree to which they wish to specify the financial

consequences of the disaster scenario. Next, in order to perform a risk analysis on a portfolio of

mines, we propose a method of estimating the correlation structure of high-dimensional max-stable

vectors. Using the techniques of [45] to map the relationship between normal correlations and max-

stable correlations, we can then use techniques inspired by [4, 44, 56] to estimate the underlying

correlation matrix, while preserving a sparse, positive-definite structure. The correlation matrices

are then used in the calculation of model-robust risk metrics (VaR, CVAR) using the the Sample-

Out-of-Sample methodology [5]. We conclude with several new techniques that were developed in

the field of robust performance analysis, that while not directly applied to mining, were motivated

by our studies into distributionally robust optimization in order to address mining problems.
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CHAPTER 1

Introduction

This dissertation was motivated by a number of problems that were encountered in the course

of a multi-year project to evaluate financial and environmental risk for mining corporations. Funda-

mentally, we were asked to identify environmental risks that would threaten the operating status of

a mining project, quantify the financial impact of a particular risk event occurring, and incorporate

these two ideas into pricing models and risk metrics. While seemingly straightforward, we found

that in many ways, existing models for these problems were unsatisfactory, and did not capture

many of the features seen in the real world. Moreover, certain data were very limited, especially

by design (e.g., climate maxima), and made estimation error a significant problem. This motivated

an approach to these problems that was focused on the idea of model robustness - because many

of the features of the data were poorly understood, we did not want to burden ourselves with

undue assumptions or overly complicated models, while at the same time being able to account

conservatively for the divergence from a simpler model from reality.

In essence, the idea of distributionally robust calculations follows this type of “flavor”: Given

some data X1, ..., Xn, we calibrate a simple parametric model Pref where the data are distributed

according to f(x|θ), where θ represents the underlying set of parameters. Given some function

of concern, g(X), and a distributional discrepancy D(P, Pref ), which measures (in some sense)

deviations between models P and Pref , we wish to calculate:

max
P :D(P,Pref )≤δ

EP [g(X)]

where EP [g(X)] is the expectation of g(X) under the measure P (we could also take a minimum).

Estimating δ is quite important - and the methods for doing so will depend on the exact specification

of the problem. For a very small size, for example, δ can be chosen as D(Pn, Pref ), where Pn is the

empirical distribution, this will give the user conservative upper and lower bounds on the expectation

of the function, incorporating the possible misspecification of the model. This is especially important
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when trying to estimate extreme quantiles of distributions with small sample sizes. For large sample

sizes, δ can be chosen according to an expert opinion, or through the use of certain asymptotics. The

function g can be a pricing function in a financial application, or it can be an indicator function

for an extreme event. The most common discrepancies used for D(·, ·) are the Kullback-Leibler

divergence and the Renyi divergence; we will also consider Wasserstein-type distances. We will see

in Chapter 2 how this can be applied to the pricing of a mine.

Since the 1980s, many projects and investments undertaken by corporations have been evaluated

using the “real options” methodology [10] - essentially, the idea is that every project results in a

series of cashflows based on traded (or non-traded) financial risks, and that the decision maker on

a project will take actions with the intent of maximizing the value of the project; these can then

be priced like an option under a risk-neutral measure. To use the example of a mine, consider the

simplest idea possible - a mine operator will extract q units of a mineral at time T with price ST

per unit(following, say, a Geometric Brownian Motion) and cost C per unit. If the mineral is not

extracted at time T , the lease expires and the operator can no longer extract anything. Then the

mine can be viewed simply as q European options on the mineral with unit price ST , with strike C

and expiry T . More generally, a mine operator can be viewed as having Q units of mineral reserves,

with a rate of extraction q, and cost of extraction C. At any time, he holds the option to abandon

the mine, pay a cost to have it closed, or to operate the mine and earn profits of q(S − C)dt until

the Q units of reserves are depleted. At every step, he will make a decision (based on his operating

strategy), to maximize the discounted future value of the mine plus current cashflows. This can be

viewed as a stochastic control problem which can be used to find the optimal strategy, and hence

the price of the mine.

The shortcoming of this approach lies in the fact that the risks it considers are purely financial -

the market price of the underlying mineral - but it ignores the environmental risks that are perhaps

the most significant driver of value in the field. An environmental disaster at a mine site will

frequently reduce the value of a mine to zero, as it is left inoperable, or even less than zero when one

factors in reparations and fines levied by the local government, and lawsuits from damaged parties.

Moreover, these environmental disasters (namely tailings dam failures), have demonstrably occurred
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at a much greater rate than predicted by models and engineering specifications. Consequently, the

value of mines given by the standard real option models will be greater than predicted.

In Chapter 2, we develop a model for pricing mines that incorporates environmental disasters,

up to a level of specification in the design of the mine - if a mine is built to withstand up to a 1-in-100

year climate event, failures will occur at that rate. We assume this as a user input. However, given

the difficulties associated with estimating tails quantiles of distributions using small data sets, we

then incorporate a date-driven methodology for estimating a robust worst-case probability of failure

[7]. We assume that the threshold for a climate event with probability p of occurring in a particular

year was estimated by looking at the time series of daily maxima for precipitation. The distribution

of annual maxima would then be estimated by looking at the annual maxima from that time series,

and calibrating an appropriate GEV model using maximum likelihood estimation, at which point

the threshold would be the 1−p quantile of the calibrated (or reference) distribution. The builder of

the mine would then build their tailings dam to an appropriate height and other specifications to be

able to withstand such an event. We can then incorporate the robustification methodology discussed

earlier on the time series - finding the greatest (and least) possible probability of exceeding that

threshold in a given year, given the divergence between the actual data and the calibrated model.

We can use this robust worst-case probability then as an input into the pricing engine, to come up

with a set of lower bounds for mine that, as we shall see, perform well when used with real data.

While this pricing engine can be used to value individual entities and calculate hedge ratios,

calculating risk metrics on a portfolio of mines is somewhat more complicated. While one can

simulate the underlying mineral prices to reprice the portfolio, we must be able to jointly simulate

the maxima of precipitation events over a wide variety of mine sites. The theory of max-stable

vectors - where the marginal distributions are GEVs - has been developed in recent years, but

estimation is still an issue. The most common approaches involve pairwise [38] or triple-wise [13]

composite likelihoods. However, when the dimension of the locations grows large (relative to the

number of observations), the performance of these estimation techniques deteriorates rapidly. For

example, if the number of locations is equal to 10, the density of the corresponding multi-dimensional

max-stable distribution has 105 terms [6, 55].
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In Chapter 3, we develop a family of algorithms for estimating the underlying covariance matrix

Σ of a max-stable vector of the following form (component-wise):

M(i) = max
n≥1

log {− log(An) +Xn(i) + µ(i)}

where the Xn are iid realizations of a normal random vector with zero mean and covariance matrix

Σ and the An are an increasing sequence of sums of independent exp(1) random variables. [19]. We

refer to the distribution of Xn as the generative distribution, or, in a slight abuse of the language,

the generative process. In order for this problem to be fungible, we must make assumptions about

the structure of the covariance matrix Σ, namely, that it is sparse, and therefore, the number of

parameters being estimated will be significantly less than the dimension d of the underlying data.

Since the link function between the correlation of the generative process, Σ, and the correlation

of the corresponding max-stable vector is unknown, but we denote it by CM (Σ), we use the exact

simulation techniques developed by [45] in order to estimate the function CM (Σ). We use ideas

from the theory of covariance matrix thresholding, and advances by [44, 62], to develop a penalized

estimator that still satisfies the constraints of a covariance matrix - that is, it is strictly positive

definite, while also being sparse, namely, we solve the optimization problem

max
Σ:Σii=1

1

2
‖CM (Σ)− S‖2F + λ1 ‖H(CM (Σ)− CM (S))‖1,off

+ λ2 ‖H(CM (S)− CM (Σ))‖1,off

s.t. Λmin(Σ) ≥ τ

where S is the correlation matrix of the data, Λmin(Σ) is the minimal eigenvalue of the matrix Σ,

and H(A)ij = AijI(Aij > 0). The norm ‖·‖1,off is defined as:

‖A‖1,off =
∑
i 6=j
|a|ij .

Once we have a meaningful estimator of the covariance structure of the precipitation vector, we can

then proceed to calculate various risk metrics on the portfolio.
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In Chapter 4, we use a novel methodology [5] called Sample-out-of-Sample to calculate risk

metrics like VaR and CVaR on a portfolio of mines. The sample-out-of-sample methodology com-

bines real observed data with reasonable stressed data in the following manner: given sample data

X1, ..., Xn and stressed data Y1, ..., Yn, we create the combined data Z1 = X1, ...Zn = Xn, Zn+1 =

Y1, ...Z2n = Yn . The SOS profile function Rn(θ) is defined as:

Rn(θ) = min
∑
‖Xi − Zk‖22 π(i, k)

s.t.
∑
k

π(i, k) =
1

n

π(i, k) ≥ 0∑
h(θ, Zk)π(i, k) = θ.

The limiting distribution of Rn(θ) is calculated for a variety of different set-ups of this framework,

which can then be used to calculate robust confidence intervals in the normal fashion. When

presented with a portfolio of mines, we can use a combination of historical and simulated asset

price data along with historical and simulated precipitation to construct the combined data set.

The mines can be repriced from the simulated data using the Taylor Expansion and Greeks (partial

derivatives) calculated in the initial pricing; the simulated precipitation can be done using the exact

sampling methods from [45] and the covariance estimator from Chapter 3. Using this, we can come

up with a simulated set of portfolio values, and can come up with robust estimates for their behavior

in the tail (VaR and CVaR) using our sample-out-of-sample methodology.

Finally, we independently consider two developments in robust performance analysis. As was

mentioned earlier in this introduction, this is typically formulated as the maximization of the expec-

tation of some function over all probability models within some range determined by a divergence

measure around a baseline model. However, this fails to preserve certain natural features of the

model, such as an i.i.d. model assumptions, and therefore, the bounds given may not be as tight

as possible. We derive an asymptotic formula for the bounds given for a rare event in a random

walk setting, and calculate the corresponding rate of convergence. While it is natural to add in-

dependence constraints to improve the performance of this approach, adding these independence

constraints makes the optimization non-convex, and therefore impossible to solve for all practical
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purposes. However, we develop a methodology to solve this problem in a large deviations setting

for a variety of random walk problems. This is incorporated into an iterative numerical procedure

which has excellent performance in simulation studies. We also demonstrate another technique that

works outside of the large deviations setting, and that has very promising performance in simulation

studies for random variables with finite support.
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CHAPTER 2

Robust Real Options Model

The goal of this chapter is to introduce and explain a novel methodology for practical robust pricing

using real option techniques. We concentrate on mining projects because there are risk elements in

the mining industry that allow us to expose the need for robust pricing. In particular, the presence

of what is referred to as private risk in the real options literature and environmental shocks make

mining a well suited setting in order to explain our methodology.

In order to understand the elements of our methodology and provide a general overview of the

contributions of this chapter we organize this introduction as follows. First we briefly summarize

conventional pricing techniques which are prevalent in practice. We will expose positive and negative

aspects of current practices with the intent of motivating the approach that we propose as a way to

mitigate potential drawbacks in conventional techniques. In the second part of the introduction we

explain the elements of our methodology and how these are applied to provide a robust valuation

technique. The concept of robustness will be explained at a conceptual level.

2.0.1. Robustness as a Concept. Here, we use the term “robustness” or “robust performance

analysis” to quantify the effect of modeling error as in [30] - namely, for a specific aspect of the

model, we wish to bound the effect of model error for the expectation of a function of a random

variable - in this case, the price of a mine as a function of the price of the underlying asset. In

essence, for some random variable X, given a baseline model P 0, and a measure of divergence δ, we

wish to estimate:

min or maxPEP [f(X)]

s.t.D(P, P0) ≤ δ

where D(P, P0) is some suitable measure of distributional discrepancy such that the formulation of

our optimization problem is convex. Typical choices for this are the Kullback-Leibler divergence
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[42] and the Renyi α-divergence [54]. In many ways, this is similar to the ideas of robust control

developed in [33, 34, 52]. It is instructive to think of this as an adversarial optimal control problem

- in which the adversary changes the underlying distribution of the model within a constraint on the

difference of the models, and we wish to describe this worst case change in probability distribution

and quantify the impact thereof.

This is closely related, but distinct from the concept of “robustness” typically seen in the statistics

literature. Robust statistics is a collection of methods that aim to reproduce many of the classical

statistical methods (for both hypothesis testing and point estimation) that minimize the effects of

outliers or small departures from model assumptions [36, 32]. Many of the classical methods are

extremely sensitive to modeling assumptions in the sense that small deviations from the assumption

of normality in the underlying distribution (or in the use of the central limit theorem for the

limiting distribution of a test statistic), the distribution of the test statistic using classical methods

can often diverge significantly. For example, the F-test for homogeneity of variances is highly

dependent on the normality assumption of both samples. Common ideas within this literature are

those of the breakdown point - essentially the percentage of data that does not come from the

assumed distribution - and the influence function - essentially the directional derivative between

the asymptotic limit of the test statistic under the baseline model in the direction of a mixture

of the baseline distribution and a point mass at an outlier. The most common type of estimator

in the field are M-estimators: generalizations of the maximum likelihood estimate in which the

objective function is chosen to achieve a desirable behavior for the influence function (boundedness,

for example). Perhaps the simplest examples of robust estimators are the median (for the location

of a symmetric distribution) or interquartile range (for dispersion). The median has a breakdown

point of 50% and the interquartile range has a breakdown point of 25%, compared to 0% for the

mean and the total range, respectively.

In a sense, the objectives of these two fields of inquiry are similar - namely, grappling with

the difficulties caused by model misspecification (even in a rather small sense). In the case of

statistical robustness, we are concerned with creating estimators that perform well against adverse

model behavior, however, in the case of the “robust performance analysis” - the function that is

being tested has been predetermined - fundamentally, one must make a modeling choice for the
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most robust model rather than the most robust function; instead, we are concerned with finding

the distributions that produce the worst-case performance. In a certain sense, these two approaches

are mirror images of one another, while also having very different purposes.

2.0.2. A quick summary of standard pricing techniques: advantages and drawbacks.

Perhaps the most basic valuation methodology relates to the use of discounted cashflow. This

technique, which is widely used in practice, has the benefit of being very simple to conceptualize. The

disadvantage is that the underlying assumptions tend to oversimplify dynamic and random aspects

of investing under uncertainty. For example, under the discounted cashflow technique one typically

assumes that the manager or owner of a project will exploit a mine at a given pre-specified rate

without the opportunity to react to adverse or unexpected outcomes, such as unusual fluctuations

of the underlying commodity price. A more sophisticated form of cashflow analysis allows the

introduction of probability distributions to recognize risk and uncertainty. In such case, the expected

net present value (NPV) of future payments with a suitable discounted rate (often referred as the

Internal Rate of Return, or IRR). The problem is, however, that unless this probability distribution

is well calibrated (relative to marketable assets) and the manager’s decision making process in

recognized, the cashflow analysis might lead to pricing which might not be arbitrage free (i.e. the

pricing might give rise to profit opportunities without any risk), which is not a realistic consequence

in any practical pricing model.

Risk neutral pricing is a technique which is closely related to discounted cashflow with the inclu-

sion of probability distributions introduced for modeling uncertainty [18, 20, 35]. The difference is

that risk neutral pricing is built from a fundamental characterization of arbitrage free models, which

is crucial to calibrate the underlying probability models used to model uncertainty. In essence, the

idea of risk-neutral pricing is that there is a set of probability measures where the price of each asset

is equal the discounted (at the risk-free rate) expectation of the future value of the asset under this

probability measure. Namely, given a set of linear instruments, and such a probability measure, an

arbitrage-free price for an derivative instruments can be calculated. In the simplest case, this is a

probability measure where assets grow (on average) at the risk-free rate, and discounting is carried

out at the risk-free rate. Such a characterization fully specifies the family of probability models

which might be used in the discounted cashflow methodology to avoid creating an arbitrage. In
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simple words, from a purely mechanical standpoint, risk neutral pricing is closely related to cash-

flow analysis. By mechanical we mean that the pricing formulas are identical once the probability

distribution and the discount rate are specified. The differences are the following: First, the proba-

bility distribution that is used for randomness is calibrated to avoid arbitrage opportunities in the

risk neutral pricing setting (as opposed to using a statistical or an expert judgement for the actual

likelihood of certain events). Second, the discount rate is always the risk free rate in the risk neutral

methodology approach, whereas in the cashflow analysis setting, the rate is adjusted to reflect the

risk of the investment to produce the IRR.

It is often argued in the literature that the cashflow analysis is equivalent to the risk neutral

pricing approach because one can always reverse engineer the IRR to equate any given risk neutral

pricing valuation. This is correct, again, mathematically, but the risk neutral pricing methodology

is slightly more convenient because it implicitly assigns an IRR to every single eventuality that can

occur – every single possible bet or outcome. A particular mining project will be the sum of many

such events and it is conceptually easier (from the standpoint of calibration) to work with the sum

of the pieces [28, 10].

Since the risk neutral methodology allows to provide arbitrage free prices to every possible

uncertain outcome, then we can now incorporate the impact of managerial decisions, dynamically

in time, in the face of uncertainty. This is precisely the idea behind real option valuation. It

recognizes that investment opportunities (such as the development of a mining projects, among

other examples) have embedded decisions which mimic the features of financial options, but whose

impact have real consequences in the operation and cashflow of an investment. [2, 61].

Although the real option pricing methodology is conceptually very advantageous, in practice, it

may be practically difficult to implement because there are many different probability distributions

which are arbitrage free. Thus, it can be specially challenging to calibrate in situations in which

there is very limited information on consequential risks. Also, where private risk involved, it is

not priced by the market and is therefore particularly challenging to estimate [60, 59]. In standard

cashflow analysis the IRR serves as a mechanism to summarize the market price of risk. Regardless

of the potential conceptual shortcomings, earlier, the idea of having a single parameter which allows
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to one to assess the impact of risk and uncertainty is quite appealing and this is a lesson which we

shall keep in mind as we introduce and explain our methodology.

2.0.3. General overview of our robust pricing methodology. We have mentioned that

real option pricing allows us to apply non-arbitrage principles to investment valuation. The idea is

to recognize which risk factors are marketable (i.e. priced by the market) and which other factors

are not directly priced by the market (for example, risks such as tailing dams failures - see Section

2.3 or social unrest) [59, 60, 8].

The key elements for the implementation of the procedure that we propose can be described as

follows:

(1) We assume that there exists a basket of single assets (mines) for which their respective cost

structure (the details of which are described in Section 2) is well known (not necessarily the

same among these assets) and for which a transaction price (which we take as the market

price) is known at a particular point in time.

(2) We proceed by identifying risk factors which can be calibrated from market information

(we call these marketable factors). For example, the price of the underlying commodity

(such as gold) is one of such assets. We advocate the use conventional financial models for

marketable factors [37].

(3) We introduce a flexible, yet simple, model which can be used to incorporate both mar-

ketable factors and risk whose market price cannot be calibrated directly from market

information (we call them private risk factors). This may include, as an example, the

occurrence of tailing dam failures, or flooding at the site, or the loss of production due to

other natural hazards or environmental conflicts.

(4) We calibrate the marketable risk factors using market information (such as financial options

traded). We use a range of techniques, both objective (such as statistical modeling) and

subjective (such as the opinion of analysts and experts) to calibrated private risk factors.

(5) We obtain a probabilistic model, which we call the baseline model, for both private and

marketable risks combined. We use the notation P0 to compute probabilities of events under

the baseline model. We assume that these types of risks are statistically independent. Our

robust methodology will correct for this assumption, as we shall explain momentarily.
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(6) We apply the real option pricing methodology under the model obtained in E), for each of

the companies in A). This step is carried out using dynamic programming. The mechanics

are somewhat technical, but they are standard and efficient numerical methods (which

we adopt) are explained in [10]. The value obtained is called the baseline price, and the

optimal policy obtained by applying dynamic programming is called the baseline policy.

(7) We define a family of probability models (that is, probability measures defined on the

same set of events as the baseline model) which forms a “neighborhood” around the base-

line model. The size of the neighborhood is measured by a parameter δ ≥ 0. Such a

neighborhood is called the uncertainty set around P0 and it is denoted as Uδ. If δ = 0 then

there is no uncertainty about the baseline model and therefore Uδ is a set with a single

element, namely, P0; so we write Uδ = {P0}. We will discuss how we construct Uδ in the

sequel. Let us continue and explain how we calibrate δ.

We now advocate two procedures using ideas from Extreme Value Theory and Robust Modeling:

Procedure 1: Robust Pricing with Rainfall Data

(1) Assuming that the occurrences of a disaster within particular time periods, are independent

and identically distributed, and that a mine has been built to withstand a 1-in-1
p year

rainfall event, we estimate from a time series of rainfall maxima the (1 − p) quantile of

the distribution. Then, given δ specified by the distance between the empirical data and

the fitted distribution, we calculate the worst case arrival probability p? within the set Uδ.

The methodology for this will be discussed in Section 2.4.3.

(2) We reprice the mine using a Bernoulli process with the arrival rate p?. These prices can

now be compared to market prices, and used to identify possible value trades.

Procedure 2: Robust Pricing with Market Comparisons

(1) Suppose that δ > 0 is fixed, and that αhas been chosen for the particular mine using the

GEV procedures as above. Then the family Uδ is set. We can produce an interval around
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the baseline price for each of the companies in 1). We call this interval an uncertainty

interval. This interval is computed for each company as follows. We fix the baseline

policy obtained from 6). The upper bound of the interval is obtained by computing the

maximum risk neutral price by ranging over all probabilistic models in Uδ. Similarly, for

the lower bound of the interval, we evaluate the minimum risk neutral price over all of the

probabilistic models in Uδ. Finally, δ is selected as the smallest value for which the market

price is contained in the corresponding uncertainty interval.

(2) We obtain a series of values δ1, ..., δn, where n is the size of the basket constructed in

item 1). These values should be treated as realizations from a distribution. One might

fit some distribution or simply use these values as an empirical sample. We might use

δ(n) = max{δi}ni=1 in order to find uncertainty intervals for companies which are not inside

the basket.

We now discuss how to build the set Uδ. The uncertainty set Uδ contains all arbitrage free models

which differ (according to a suitable notion of discrepancy, called Renyi divergence) at most by an

amount δ. The Renyi divergence [42] is convenient because it is a non-parametric notion (i.e. we

do not attempt to specify a particular form of belief because, as we mentioned earlier, we might not

have enough information in certain types of private risks). Moreover, the Renyi divergence preserves

arbitrage free models in the following sense: if pricing using P0 to evaluate expected discounted

cashflows gives rise to arbitrage free valuations, then any member of Uδ will also produce arbitrage

free valuations of investments. In fact, as one increases δ, the set Uδ will virtually include all possible

arbitrage free models in the sense just described [20].

In the next subsection we discuss the differences between our approach and standard real option

pricing methodology. We will explain why our approach is particularly well suited for the evaluation

of mining assets.

2.0.4. Advantages and drawbacks of our robust pricing methodology. As we men-

tioned earlier, our robust pricing methodology builds on what is known as the “Integrated Approach”

in real options pricing. [8] provides a discussion and a critique of this approach. [8] concludes that

the approach tends to be accurate because it recognizes the differences between marketable and

private risks, but it also acknowledges that the Integrated Approach might be difficult to apply.

13



The main problem with applying the Integrated Approach is the choice of the calibration of the

underlying baseline model. The methodology that we suggest in this paper provides a practical

approach to alleviate this calibration issue to a certain extent.

The introduction of the uncertainty region Uδ allows an ambiguous description of a reasonably good

baseline model – as opposed to an exact description of it. We demonstrate with empirical examples

that simple, yet intuitive, descriptions can be given for the baseline probabilistic description in order

to obtain uncertainty intervals of practical use.

The set Uδ includes models which explore variations around the baseline model in every direction si-

multaneously. These variations are controlled by a single parameter, δ, which we call the uncertainty

size and is dimension-less.

The drawback of the method is, first, that it still relies on knowing a relatively large set of assets

for calibration. The second problem is that, for the uncertainty intervals to be useful in practice,

the baseline model should be reasonably good so that δ is reasonably small.

2.1. Robust Pricing in Binomial and Trinomial Lattices

Our objective in this section is to focus on the conceptual elements of behind our proposed approach.

We therefore concentrate on simple binomial and trinomial models. Moreover, we provide a quick

review of basic real option pricing methodology, to introduce terminology and notation.

2.1.0.1. Binomial models and review of real option valuation via a simple mining model. In

order to motivate the use of real options for valuing mining investment opportunities, we present a

simplified example which can be valued on a binomial lattice. We emphasize that this is an idealized

situation in which the only source of randomness is a marketable risk, namely, the price of copper.

This risk can be diversified by replication and reflects a complete market which means that there is

only one way to calibrate the underlying risk neutral probabilities. Our discussion in this subsection

borrows from the presentation in [48].

Suppose we have a T -year lease on a copper mine. At the beginning of every year t, we have the

option to extract the complete reserves of the mine Q at cost per-unit C, for a profit of (S (t)−C)·Q

where S (t) is market price of copper at the beginning of year t, or pay a maintenance cost of M

dollars per year.
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We assume, for simplicity, that once the copper is extracted, we no longer have to pay a main-

tenance cost. We also assume that C is time independent.

Let r be the risk-free rate, and let the annual volatility of the price of copper be σ. If we

construct a binomial tree of copper prices, we can value the mining operation using a backward

recursion which is known as a dynamic programming recursion.

In our binomial tree, we let u = exp(σ) and d = 1/u the factors by which the price of copper

moves up and down. That is, given the price S (t) at time t, then S (t+ 1) = u · S with probability

pu or S (t+ 1) = d · S with probability pd = 1− pu, with

pu =
er − d
u− d

and pd = 1 − pu. These are the so-called risk neutral probabilities which are obtained using a

non-arbitrage argument [48]. We shall use E0 (·) to denote mathematical expectations associated

with the use of the probabilities pu and pd.

At time t = T (i.e. the end of the leasing period) the operator of the mine will either pay the

maintenance cost, or receive the profit from the mine:

V (S(T ), T ) = max[−M, (S(T )− C) ·Q].

At time t = 0, ..., T − 1, the operator of the mine will maximize his value by either extracting

the copper, or paying the maintenance cost if the expected continuation value less the maintenance

cost is greater than the extraction value. That is,

V (S(t), t)

= max[−M + e−rtE0 [V (S(t), t+ 1)] , Q(S(t)− C)]

= max[−M + e−rt(puV (uS(t), t+ 1) + pdV (dS(t), t+ 1)), Q(S(t)− C)].

The value of the mining operation today is V (S(0), 0). Consider a mine with the following

parameters:

S = 0.4
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Q = 150, 000

M = 500, 000

C = 0.5

T = 10

σ2 = .08

r = .1

u = 1.32

d = .75

pu = .61

pd = .39

If one were to evaluate this investment opportunity with standard NPV methods, the value of

the mine would always be negative, as the current value of copper is below the extraction cost. As

such, there is no internal rate of return that will give a positive price for the mine.

However, looking at the lattice in Table 2.1.0.1, the expected value from following this operating

policy is $32.5mm. In Table 2.1.0.1, an up move is made by moving directly to the right, and a

down move is made by moving to the right and down one step. In the last column, we show the

corresponding copper prices for time T = 10.

2.1.0.2. Real option valuation under incomplete markets and private risks. We now modify the

previous simple example. This time we introduce a private risk and we illustrate the use of our

robust pricing methodology.

In any given year, we have a fixed, independent probability pjump of there being a disaster at

the mine site, in which case, the owner of the mine loses any ability to extract from the mine site,

and pays a large fine L. This disaster is idiosyncratic to the mining site, and cannot be hedged in
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T = 0 1 2 3 4 5 6 7 8 9 10 S(10)

32.5 48.4 70.6 101.1 142.8 199.3 275.5 377.6 514.2 696.7 940.1 6.76

17.5 27.9 42.8 63.9 93.4 134.2 189.8 265.1 366.2 501.6 3.84

7.3 13.4 22.5 35.9 55.6 83.9 123.6 178.4 252.4 2.18

1.1 4.0 8.7 15.9 27.4 45.1 71.8 111.0 1.24

Mine Value −1.7 −0.7 0.9 3.6 8.2 16.3 30.6 0.7

−2.4 −2.1 −1.7 −1.4 −1.0 −0.5 0.4

−2.1 −1.7 −1.4 −1.0 −0.5 0.23

−1.7 −1.4 −1.0 −0.5 0.13

−1.4 −1.0 −0.5 0.07

−1.0 −0.5 0.04

−0.5 0.02

Table 2.1. Copper Prices and Mine Values

the financial markets with traded instruments. At time t = T , then, our expected payoff is:

V (S(T ), T, pjump) = max[−M,Q(S(T )− C)](1− pjump)− pjumpL.

For time t = 0, ..., T − 1:

V (S(t), t, pjump) = (1− pjump)E[V (S(t+ 1), t+ 1, pjump)|no disaster at time t]− pjumpL

= (1− pjump) max[−M + e−rt(puV (uS(t), t+ 1, pjump)

+ pdV (dS(t), t+ 1, pjump)), Q(S(t)− C)]− pjumpL.

We look at the case where we expect one disaster every 40 years (pjump = .025) and have a loss

L = $15mm. The value is considerably different from the value of the mine without the disasters,

as we can see in Table 2.1.0.2.

One issue that arises in this method of valuation is that is can be difficult to precisely estimate

the distribution of the private risks. Moreover, in this case, the value of the mine is in fact quite

sensitive to the arrival rate of disasters. We propose here a methodology of putting bounds on the

value, given some level of uncertainty in our probability distribution. To quantify this uncertainty,
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T = 0 1 2 3 4 5 6 7 8 9 10 S(10)

22.1 35.4 54.5 81.5 119.6 179.2 247.2 350.3 488.8 672.6 916.5 6.76

11.1 19.9 32.9 51.7 78.8 117.3 171.3 246.4 250.3 488.8 3.84

3.4 8.7 16.8 29.1 47.5 74.6 113.8 169.0 245.9 2.18

−1.3 1.4 5.6 12.5 23.5 40.8 67.6 107.9 1.24

Mine Value −3.5 −2.4 −0.8 1.9 6.6 14.8 29.5 0.7

−3.8 −3.4 −2.0 −2.3 −1.6 −0.9 0.4

−3.4 −2.9 −2.3 −1.6 −0.9 0.23

−2.9 −2.3 −1.6 −0.9 0.13

−2.3 −1.6 −0.9 0.07

−1.6 −0.9 0.04

−0.9 0.02

Table 2.2. Mine Valuation Tree with Disaster

we use the Kullback-Leibler divergence:

KL(P |P0) =
∑
x

p0(x) log
p(x)

p0(x)
.

In this example, for the sake of simplicity, we restrict our search to probability measures where the

arrivals of disasters are memoryless, and have a constant probability of arrival. In later sections,

we will develop a methodology to search over all probability measures within a particular range δ

of our base distribution, and develop a methodology for estimating an appropriate δ.

Starting with a base disaster probability p0
jump, which is determined either through statistical

methods or expert analysis, we specify a level of tolerance δ and solve the following optimization:

min
0≤pjump≤1

V (S(0), 0, pjump)

s/t(T + 1)(pjump log(
pjump
p0
jump

) + (1− pjump) log(
1− pjump
1− p0

jump

)) ≤ δ

using a search on pjump to match the KL-divergence constraint. Note that this is actually the

solution to min-max problem, as V (S(0), 0, pjump) is the value of the mine under the optimal

extraction strategy for the probability measure with pjump as the intensity. We can also solve the
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δ min max

.005 20.45 23.76

.01 19.78 24.46

.02 18.8 25.42

.05 16.97 27.3
Table 2.3. Upper and Lower Bounds as Function of δ

corresponding maximization problem to come up with a “confidence interval” for a reasonable range

of values for the mine given our base disaster estimate. See Table 2.1.0.2 for an example.

2.2. Real Options Review

As we have mentioned earlier, the most basic and fundamental method of valuation in finance is the

discounted cashflow model. For many capital budgeting decisions, however, discounted cash flow

based valuation methods do not account for the flexibility in operations that many projects allow,

nor do discounted cash flow methods.

The recognition by [10] that these flexibilities could be formally described as options has allowed

for the development of methods for valuation and hedging for a variety of many projects using the

tools of mathematical finance. In [8], this is referred to as the “classic approach” - which relies

heavily on the ideas taken from classical mathematical finance, as it assumes that the risk inherent

in natural resource investments, derives entirely which the uncertainty is a traded metal or mineral

with a large and liquid market. In this approach, there exists a self-financing, dynamically traded

replicating portfolio that can perfectly hedge the stream of cash flows and decisions made by the

operator of the mine, guaranteeing an arbitrage free-price (or range of prices, depending on the

model of the underlying being used).

2.2.1. Classic Approach for Mine Valuation. Fundamentally, a mine can be viewed as a

collection of reserves, Q, with a unit extraction rate q and unit extraction cost C. If a mine is open,

the operator collects q(S−C)dt in profits during the time interval [t, t+dt]. If the mine is treated as

static investment, where the underlying mineral is simply extracted until the reserves are depleted,
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the value of the mine can be expressed as:

V (S) =

∫ Q/q

0
q(Se(r−d)t − C)dt (2.2.1)

where S is the current value of the mineral, r is the risk-free interest rate, and d is the lease rate of

the mineral. This price can be attained through a static hedging strategy by holding a portfolio of

forward contracts on the underlying. Ignoring the decisions available to the mine owner can lead to

clearly underestimating the value of the mine. In particular, this is evident from the fact that the

estimated value indicated in (2.2.1) can be negative whenever the cost of extraction is sufficiently

large relative to the price of the underlying.

In order to accurately evaluate the value of the mine we must recognize that the following states

are possible for the mine (representing decisions available to the owner):

• Open

• Closed

• Abandoned

As in [10], we let a mine have the following parameters:

• Initial Reserve level Q(0)

• Extraction rate q

• Unit Extraction Cost C

• Annual Maintenance Cost M

• Switching Cost Open-to-Closed K1

• Switching Cost Closed-to-Open K2

• Cost growth rate π

• Tax Rate tr

• Property tax tp
20



Underlying Price Operating State P&L

S(t) > φ1(t, Q(t)) Continue Open q(1− t1)(S(t)− C)dt

φ3(t, Q(t)) < S(t) < φ1(t, Q(t)) Closed −K1 −Mdt

S(t) < φ3(t, Q(t)) Abandoned 0
Table 2.4. Net P&L for operating decisions from [t, t+ dt] when Open

Let s = (s(t) : t ≥ 0) be a price path of the underlying resource. We define S(t) = s(t)e−πt be the

cost adjusted price process. Let Q = {Q(t) : t ≥ 0} be the level of reserves at time t. Let

φ(t, Q) =


φ1(t, Q)

φ2(t, Q)

φ3(t, Q)

φ4(t, Q)


be an operating strategy where φ1(t, Q) is the level of S at which an open mine closes given level

of reserves Q, φ2(t, Q) is the level of S at which a closed mine opens given reserve level Q, and

φ3(t, Q) and φ4(t, Q) are the levels of S at which the mine is abandoned for an open and closed

mine, respectively. Let Φ be the set of all such strategies. See Tables 2.4 and 2.5 for the Profits

and Losses (P&L) from [t, t + dt] for a particular operating strategy. For a price path S, and an

operating strategy φ, let H(S, φ) be the discounted value of all cashflows from price path S using

operating strategy φ during the time interval [0, T ]. The value of the mine under a risk-neutral

measure P ∗ for the price process s is

V (s(0)) = max
φ∈Φ

EP
∗
[H(S, φ)].

2.2.2. Implementation. Monte Carlo simulation provides a pricing framework that can be

used for a variety of models and mine specifications; we can approximate the optimal switching

strategy using the Longstaff-Schwartz algorithm [46], similar to [57, 17]. Monte Carlo techniques

must be used as the number of state variables is greater than two.
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Underlying Price Operating State P&L

S(t) > φ2(t, Q(t)) Open −K2 + q(1− t1)(S(t)− C)dt

φ4(t, Q(t)) < S(t) < φ2(t, Q(t)) Continue Closed −Mdt

S(t) < φ4(t, Q(t)) Abandoned 0
Table 2.5. Net P&L for operating decisions from [t, t+ dt] when Closed

We present here a version of the implementation of the Longstaff-Schwartz algorithm used in

[17].

Using the risk neutral dynamics, we generate N paths of the cost adjusted underlying S at a set

of discrete time points equally spaced with distance ∆t between consecutive points until a terminal

time T = κQq , for κ > 1. In order for the valuation to be accurate, T must greater than Q/q. The

number of steps in each path is therefore αQq /∆t = NT .

We let R(j) = jq∆t, for i = 0, ..., Q(0)
q·∆t = NQ. We denote by Vt((Si(t), R(j)) andWt(Si(T ), R(j))

the realized value of the open and closed mine at the t-th time step, for price path i, and reserve

level R(j). The cash flow when the mine is open is:

CF (S(t)) = (1− tr)(S(t)− C) · q ·∆t.

At terminal time T , we assume the value of the mine is identically zero for each time after that

points. Moreover, whenever the reserves are at zero, the value of the mine (open or closed) is zero,

regardless of time:

Vt(Si(t), 0) = Wt(Si(t), 0) = 0, t = 1, .., NT .

At time T , the operator will either have the mine open or abandon the mine, in order to maximize

his profits, since the value of the mine will be zero afterwards:

VNT (Si(NT ), R(j)) = max(CF (Si(NT ), 0)

WNT (Si(NT , R(j)) = max(CF (Si(NT )−K2, 0).
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Expected Value Optimal Decision Observed Value

CF (Si(t)) + ft,R(j−1)(Si(t)) Continue Open Vt(Si(t), R(j)) = CF (Si(t)) +

e−(r−π+tp)∆tVt+1(Si(t + 1), R(j − 1))

−K1 −M∆t + gt,R(j)(Si(t)) Close Vt(Si(t), R(j)) = −K1 −M∆t +

e−(r−π+tp)∆tWt+1(Si(t + 1), R(j))

0 Abandon Vt(Si(t), R(j)) = 0

Table 2.6. Decision tree for Open Mine

Expected Value Optimal Decision Observed Value

−K2 +CF (Si(t)) + ft,R(j−1)(Si(t)) Open Wt(Si(t), R(j)) = −K2 + CF (Si(t)) +

e−(r−π+tp)∆tVt+1(Si(t + 1), R(j − 1))

−M∆t + gt,R(j)(Si(t)) Continue Closed Wt(Si(t), R(j)) =

−M∆t + e−(r−π+tp)∆tWt+1(Si(t + 1), R(j))

0 Abandon Wt(Si(t), R(j)) = 0

Table 2.7. Decision tree for Closed Mine

After this point, we are able to estimate the continuation value of each state as a function of the

price of the underlying at the previous time step.

e−(r−π+tp)∆tVt+1(Si(t+ 1), R(j)) = ft,R(j)(Si(t)) + εi,1

e−(r−π+tp)∆tVt+1(Si(t+ 1), R(j)) = gt,R(j)(Si(t)) + εi,2

where

ft,R(j)(x) = αt,j(1) +

n∑
`=1

βt,j,`(`)x
`

gt,R(j)(x) = γt,j(2) +
n∑
`=1

ζt,j(`)x
`.

Regressions are carried out separately for each level R(j). The choice of n can vary, for a single

state variable, n = 3 is typically sufficient. For each level R(j), an operating decision will be made

in order to maximize the value of the asset at each time step. We update the observed values Vt

and Wt as in Tables 2.6 and 2.7.
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Expected Value for Open Mine Optimal Decision

CF (S(0)) + f0,R(NQ−1)(S(0)) Continue Open

−K1 −M∆t + gt,R(NQ)(S(0)) Close

0 Abandon

Expected Value for Closed Mine Optimal Decision

−K2 + CF (S(0)) + f0,R(NQ−1)(S(0)) Open

−M∆t + g0,R(NQ)(S(0)) Continue Closed

0 Abandon

Table 2.8. Decision tree at t = 0

For both states, the operator compares the values in the lefthand column, chooses the maximum

value, and records the observed values in the corresponding righthand column.

This process repeats until t = 0. At time 0,we estimate the continuation values by averaging

over all the paths:

f0,R(NQ−1)(S(0)) =

N∑
i=1

e−(r−π+tp)∆tV1(Si(1), R(NQ − 1))

g0,R(NQ)(S(0)) =
N∑
i=1

e−(r−π+tp)∆tW1(Si(1), R(NQ)).

The value of the mine will be the expected value of the initial optimal operating decision.

See Algorithm 1 for a summary of this procedure.

This approach of using Monte Carlo simulations to price American Options, and more gener-

ally, to solve optimal stopping and optimal switching problems was first proposed by [46]. The

theoretical convergence properties of the procedure were unknown until the results of [16]. The key

to their insight was that there are two approximations being made: (1) The true value function is

being approximated by a finite number n of basis functions and (2) Monte-Carlo simulations and

least squares regression are used to estimate the value of the approximated value function. They

demonstrated that the solution to the optimal stopping problem using the finite number of basis

functions (i.e., approximation 1) approaches with probability 1 the solution to the optimal stopping

problem with the true value function, and moreover, that for a fixed number of basis functions

approximating the true value function, the Monte-Carlo and regression procedure has almost sure
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convergence to the solution of the optimal stopping problem for the approximated value function.

Therefore, the whole procedure has almost sure convergence in n and N . Clearly, then the choice

of basis functions is very important as n → ∞ is required for almost sure convergence to the true

solution, and in practice, it is typical to see n = 3 or n = 4. [17] provides a method of choosing

basis functions based on polynomial forms of the forward price that show excellent empirical per-

formance for mining operations. The case of convergence of multiple-exercise options, as seen here,

is somewhat more complicated. While there has been no general proof of the convergence of the

algorithm for multiple-exercise options, see [12, 14, 49, 9] for further development of the theory for

multiple-exercise options and empirical evidence for convergence.

2.3. Modeling Catastrophe Risk

While the real options framework provides many new insights into the optionality and true

value of a mining operation, it fails to account for one major uncertainty in the cash flows of a

mine: natural and man-made disasters. Perhaps the most significant of these are tailings dam

failures. A tailings dam is used to create a tailings pond, where the byproducts of ore refinement

are stored. The tailings pond is retained permanently behind the tailings dam. A tailings pond

frequently contains toxic metals such as iron and mercury, and if, released into the environment,

can cause major environmental damage and can be deadly to local human and animal populations.

Increasingly, tailings dams are being viewed as a liability, in that they fail at a much higher rate

than conventional dams. A tailings dam failure will cause significant economic damage to the owner

of the mine, as they will be forced to suspend operations until a new tailings dam can be built, and

they will be forced to pay for a large amount to clean up the damage that the failure and ensuing

flooding have caused, and will incur substantial fines and legal dues.

A recent example of this was the Bento Rodrigues dam disaster in Minas Gerais, Brazil on

November 5, 2015. The tailings dam was a property of Samarco, which is a joint venture between

Vale and BHP Billiton, two of the largest mining conglomerates in the world. The flooding caused

at 17 deaths, and about 60 million cubic meters of iron waste flowed into the nearby Doce River.

The Brazilian Government suspended Samarco’s activities immediately, and in January 2016, fined
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Algorithm 1 To estimate the value of a mine using Longstaff-Schwarz
Given: Mine Structure (q,Q,C,M,K1,K2, t1, π), Market Parameters (S(0), r, d, σ), and Mine State
at t = 0

Step 1: Generate N price paths for S with increments of ∆t for NT = αQq ∆t, using Geometric
Brownian Motion with growth rate (r − d− π) and variance σ
Step 2: At time terminal T, estimate the value of the mine.
for i = 1 : N

for j = 1 : NQ

VNT (Si(NT ), R(j)) = max(CF (Si(NT )), 0)
WNT (Si(NT ), R(j)) = max(CF (Si(NT ))−K2, 0)

end loop
end loop
Step 3: Work backwards in time, estimate continuation values, make optimal choice each path,
operating state and level of reserves, and then record realized values
for t = (NT − 1) : 1

for j = 1 : NQ

Fit regression models e−(r−π+tp)∆Vt+1(Si(t+ 1), R(j)) = ft,R(j)(Si(t)) + εi,1 and
e−(r−π+tp)∆Wt+1(Si(t+ 1), R(j)) = gt,R(j)(Si(t)) + εi,2
for i = 1 : N

estimate continuation value, make the operating decision, and record values for
Vt(Si(t), R(j)) and Wt(Si(t), R(j)) as in Tables 2.6 and 2.7 respectively

end loop
end loop

end loop
Step 4: Estimate continuation value at t = 0

f0,R(NQ−1)(S(0)) =
1

N

N∑
i=1

e−(r−π+tp)∆tV1(Si(1), R(NQ − 1))

g0,R(NQ)(S(0)) =
1

N

N∑
i=1

e−(r−π+tp)∆tW1(Si(1), R(NQ))

Step 5: Record optimal expected value for t = 0 given the mine state according to to Table 2.8

them R$20 billion (approximately $4.8 billion USD). This does not include the costs of cleaning

up the disaster, which will be a minimum of $2.6 billion USD, nor settlements with any of those

harmed. While this is an extreme case - it shows that the potential costs of an environmental

disaster can in fact exceed the value of the mine.

We propose to incorporate the risk of natural disasters into the real options framework. We

assume that disasters arrive according to some risk-neutral process, and that when a disaster hap-

pens, the operator of the mine suffers a loss, and the mine is forced closed for some period of time

(or permanently). This approach to real options valuation is the “Integrated Approach” from [8],
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which was originally developed by [59, 60]. In this case, there are two different types of risk - one

is a market-traded, hedgeable risk, and the other is an idiosyncratic, non-market-traded risk, the

so-called “private risk” which, in fact, dominates many real investments. For the former risk, we

can and should use market inputs - namely, the value of the underlying, and the implied volatility

from the corresponding options markets. The other risk here is the failure of the mine due to some

exogenous risk factor - this cannot be hedged with a replicating portfolio of the underlying. Instead,

we are forced to use a holistic approach to deal with private risks - using subjective probabilities

that attempt to closely replicate the real world.

2.3.1. Disaster Model. We assume that the cost-adjusted price paths S follows a risk-neutral

process, and that there is a point process D(t) which describes the arrivals of disasters at the mine

site. When a disaster occurs, it overrides the operating decision of the operator, incurs a large

loss, and forces the mine to be closed for a certain period of time. The loss associated with a

disaster (in terms of government fines and legal liability) can be expressed as either a fixed cost

L or a draw from a positive random variable LD(t). We assume the closure time is a fixed length

of time TC = ND∆t. Hence, we will have a new set of states for when the mine is forced closed

Ut(S(tt), R(j), k) for k = 1, ..., N3. For an operating policy φ, a price path S, and a disaster arrival

path D, let H(S,D, φ) be the discounted value of the cashflows from following φ with S and D.

Given a risk-neutral measure P ∗, we can express the value of the mine as

EP∗[H(S,D, φ)].

We now update the values of our mine according to Tables 2.9 and 2.10.

If the disaster occurs, it overrides the operator’s choice to maximize the value of his mine. For

each time period, for l = 1, ..., N3. Ut(Si(t), R(j), k) = −Mdt + e−(r−π)∆tUt+1(Si(tj), R(j), k + 1).

When k = 0, the operator has the choice to re-open or abandon the mine according to the following

decision tree in Table 2.11.
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Expected Value Optimal Decision Observed Value

CF (Si(t)) + ft,R(j−1)(Si(t)) Continue Open Vt(Si(t), R(j)) = CF (Si(t)) +

e−(r−π+tp)∆tVt+1(Si(t + 1), R(j − 1))

−K1 −M∆t + gt,R(j)(Si(t)) Close Vt(Si(t), R(j)) = −K1 −M∆t +

e−(r−π+tp)∆tWt+1(Si(t + 1), R(j))

0 Abandon Vt(Si(t), R(j)) = 0

Disaster Vt(Si(t), R(j)) =

−L + e−(r−π+tp)∆tUt+1(Si(t + 1), R(j), N3)

Table 2.9. Open Mine Operating Decisions

Expected Value Optimal Decision Observed Value

-K2+CF (Si(t)) + ftj ,R(j−1)(Si(t)) Open Wt(Si(t), R(j)) = −K2 + CF (Si(t)) +

e−(r−π+tp)∆tVt(Si(t + 1), R(j − 1))

−M∆t + gt,R(j)(Si(t)) Continue Closed Wt(Si(t), R(j)) =

−M∆t + e−(r−π+tp)∆tWt+1(Si(t + 1), R(j))

0 Abandon Wt(Si(t), R(j)) = 0

Disaster Wt(Si(t), R(j)) =

−L + e−(r−π+tp)∆tUt+1(S(t + 1), R(j), ND)

Table 2.10. Closed Mine Operating Decisions

Expected Value Optimal Decision Observed Value

−K2 +CF (Si(t)) + ft,R(j−1)(Si(t)) Open Ut(Si(t), R(j), 0) = −K2 + CF (Si(t)) +

e−(r−π+tp)∆tVt+1(Si(t + 1), R(j − 1))

−M∆t + gt,R(j)(Si(t)) Close Ut(Si(t), R(j), 0) =

−M∆t + e−(r−π+tp)∆tWt+1(Si(t + 1), R(j))

0 Abandon Ut(Si(t), R(j), 0) = 0

Disaster Ut(Si(t), R(j), 0) =

−L + e−(r−π+tp)∆tUt+1(S(tj), R(j), ND)

Table 2.11. Forced Closed Mine Operating Decisions

Alternatively, mine closures (from a disaster) can be assumed to be permanent - in which case,

Ut(S(t), R(j)) = 0. See Algorithm 2 for a complete description of the process with permanent mine

closures.
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Algorithm 2 To estimate the value of a mine with a disaster process using Longstaff-Schwarz
Given: Mine Structure (q,Q,C,M,K1,K2, t1, π), Market Parameters (S(0), r, d, σ), Failure intensity
λ Mine State at t = 0

Step 1: Generate N price paths for S with increments of ∆t for NT = αQq ∆t, using Geometric
Brownian Motion with growth rate (r − d− π) and variance . Generate N disaster arrival paths,
where Di(t) = 0 indicates no disaster during the time period, and Di(t) = 1 indicates a disaster.
Each time period is i.i.d. and P (Di(t) = 0) = e−λ∆t.
Step 2: At time terminal T, estimate the value of the mine.
if Di(NT ) = 0 then

for i = 1 : N
for j = 1 : NQ

VNT (Si(NT ), R(j)) = max(CF (Si(NT )), 0)
WNT (Si(NT ), R(j)) = max(CF (Si(NT ))−K2, 0)

end loop
end loop

else if Di(NT ) = 1
VNT (Si(NT ), R(j)) = 0
WNT (Si(NT ), R(j)) = 0

end if
Step 3: Work backwards in time, estimate continuation values, make optimal choice each path,
operating state and level of reserves, and then record realized values
for t = (NT − 1) : 1

for j = 1 : NQ

Fit regression models e−(r−π+tp)∆Vt+1(Si(t+ 1), R(j)) = ft,R(j)(Si(t)) + εi,1 and
e−(r−π+tp)∆Wt+1(Si(t+ 1), R(j)) = gt,R(j)(Si(t)) + εi,2
for i = 1 : N

if (Di(t) = 0) then
estimate continuation value, make the operating decision, and record values
for Vt(Si(t), R(j)) and Wt(Si(t), R(j)) as in Tables 2.6 and 2.7 respectively

else if (Di(t) = 1) then
Vt(Si(t), R(j)) = 0
Wt(Si(t), R(j)) = 0

end if
end loop

end loop
end loop
Step 4: Estimate continuation value at t = 0

f0,R(NQ−1)(S(0)) =
1

N

N∑
i=1

e−(r−π+tp)∆tV1(Si(1), R(NQ − 1))

g0,R(NQ)(S(0)) =
1

N

N∑
i=1

e−(r−π+tp)∆tW1(Si(1), R(NQ))

Step 5: Record optimal expected value for t = 0 given the mine state according to to Table 2.8
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Q = 150mm lb
q = 10mmlb/year
C = $0.5/lb
K1 = $200, 000
K2 = $200, 000
M = $500, 000/year
π = 8%/year
r = 10%/year
d = 1%/year
tr = 50%
σ2 = 8%/year
λ = 1/40
L = $10mm

Table 2.12. Mine Parameters

2.3.2. Results. In this section, we benchmark our results by comparing our (baseline) model

with the results from [10], which were acquired using a finite difference solution to a pricing PDE.

Table 2.12 shows the various parameters of the simulation and the mine structure. We model the

underlying as Geometric Brownian Motion:

dS(t) = (r − d− π)S(t)dt+ σSdW (t),

and we model the arrival of disasters as a Poisson point process: D(t) with mean parameter λ. In

one case, the mine will be closed for a 2 year period, and in the other, the mine will be permanently

closed in the event of a disaster. Table 2.13 shows the valuations against a variety of different

starting spot prices.

2.4. Review of GEV models and robustification

We now consider a situation where the designer of a mine use climate information from the mine

site to set certain construction parameters. We assume that the industry standard is to build a

tailings dam to a 1-in-100 year specification, that is, it is built to withstand precipitation events

up to the threshold of a single-day precipitation event that occurs (on average) once in 100 years.

For pricing purposes, this would correspond to using an arrival intensity of λ = .01 as in the model
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Finite Difference Simulation

S(0) Open Closed Open Closed

0.3 1.25 1.45 1.17 1.37

0.4 4.15 4.35 4.16 4.54

0.5 7.95 8.11 7.85 7.96

0.6 12.52 12.49 12.52 12.46

0.7 17.56 17.38 17.77 17.57

0.8 22.88 22.68 22.79 22.59

0.9 28.38 28.18 28.36 28.17

1.0 34.01 33.81 34.18 33.98

2-year Closure Permanent Closure

0.3 Open Closed Open Closed

0.4 0 0.09 0 0.04

0.5 1.93 2.13 1.56 1.67

0.6 5.45 5.42 4.6 4.46

0.7 10.27 10.10 8.43 8.23

0.8 14.88 14.68 12.59 12.39

0.9 19.87 19.67 17.09 16.89

1.0 25.53 25.33 21.32 21.12
Table 2.13. Values of Mines Against Spot Price

discussed in Section 3. In order to estimate this threshold, we will calibrate a Generalized Extreme

Value (GEV) model to the annual maxima of precipitation of the latitude and longitude closest to

the mine location, as taken from the ECMWF data set. However, we assume that the estimates of

the GEV parameters are inefficient, and we correct for the failure specification using a technique

derived from [7].

2.4.1. GEV Models. The Extreme Value Theorem provides a complete classification of all

distributions G(x) that form the limit of

lim
n→∞

Mn − bn
an
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where Mn is the maximum of n independent samples from a random variable X, and an and bn are

a series of (deterministic) scaling constants. In other words, if we have:

lim
n→∞

P

(
Mn − bn

an
≤ x

)
= lim

n→∞
Fn (anx+ bn) = G(x),

then G(x) is a member of the family of generalized extreme value (GEV) distributions.

The extremal types theorem [26, 31] states that the CDFs (cumulative distribution functions)

of this family can be written as Gγ(ax+ b) where

Gγ(x) = exp(−(1 + γx)−1/γ), 1 + γx > 0

where a > 0, b, γ ∈ R, which are known, respectively as the scale, location, and shape parameters.

In the case where γ = 0, we take the limiting function

Gγ(x) = exp(− exp(−x)).

Any distribution F (x) whose limit (in the maximum) converges to a particular Gγ(x) is said to

belong to the domain of attraction of , which is denoted as F ∈ D(Gγ). For the following we

denote the right endpoints of a distribution as x∗F = sup{x : F (x) < 1}. There are three particular

sub-families of GEV distributions:

(1) The Frechet Distribution (γ > 0) corresponding to fat-tailed, power-law type behavior. A

distribution F ∈ D(Gγ) for some γ > 0, if and only if the support of the distribution F is

unbounded to the right, that is, x∗F =∞ and its tail probabilities satisfy

1− F (x) =
L(X)

x1/γ
, x > 0

where L(x) is a function that is slowly varying at ∞. In other words, for every t > 0,

limx→∞
L(tx)
L(x) = 1.

(2) The Gumbel Distribution (γ = 0) corresponding to semi-exponentially decaying behavior.

A distribution F ∈ D(G0) if and only if

lim
t→x∗F−

1− F (t+ xf(t))

1− F (x)
= exp(−x), x ∈ R
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Algorithm 3 Estimate V arp(X) for pclose to 1
Given: N independent samples X1, .., XN of X
Let n < N and let m =

⌊
N
n

⌋
Step 1: Partition X1, ..XN into blocks of size n, and compute the block maxima for each block to
obtain M1, ...Mm

Step 2: Calibrate a GEV model using an appropriate parameter estimation technique (maximum
likelihood, method of moments, etc.) using the block maxima M1, ...Mm and obtain parameters
â, b̂, γ̂.
Step 3: (Compute the pn − th quantile of the GEV model): Solve for x such that Gγ̂(âx+ b̂) = pn

and let xp be the corresponding solution.
RETURN xp

for a positive function f(x).

(3) The Weibull Case (γ < 0) corresponding to bounded random variables. A distribution

F ∈ D(Gγ) for some γ < 0 if and only if the distribution is bounded to the right, and its

tail probabilities satisfy

1− F (x∗F − ε) = ε−1/γL(
1

ε
), ε > 0

where L(x) is a function that is slowly varying at ∞.

A full discussion of this theory lies beyond the scope of this paper; we encourage the reader to see

the standard texts [25, 43] for more information.

2.4.2. Calibration Procedure. The calibration of max-stable distributions can be quite chal-

lenging. The most common procedure used is the Peaks-over-Threshold method. In keeping with

the methodology of [7] however, we instead use a block-maxima technique [11], (see Algorithm

3). Essentially, we contend that for a sufficiently large sub-sample, the maxima of a block will

well-approximate the distribution of the maximum. In this case, we look at the annual maxima

of daily precipitation for a particular mine site from the ECMWF. Since this data set covers daily

precipitation from 1900 to 2010, each mine site had a 111 (approximate) samples from the limiting

distribution. We then use a maximum-likelihood based estimation procedure to estimate the three

parameters: γ, a, b and acquire confidence intervals for the parameter γ. The 99% quantile of the

calibrated distribution Pref was taken to be the 1-in-100 year specification, q.99.

2.4.3. Robustification Procedure.
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2.4.3.1. Divergence Measures. We consider, though, that the sample size is relatively small and

we are highly prone to error in our model specification. We wish instead to estimate the worst-case

probability that mine fails in a particular year, looking over all possible models of this probability

with a certain range. In order to quantify this distance, we utilize a formal measure of divergence

between two probability measures. Consider two probability measures P and Q, where P and Q

are both defined on the same (Ω,F), and P is absolutely continuous with respect to Q). The

Radon-Nikodym derivative dP
dQ is then well-defined. For any α > 1, the Renyi divergence of degree

α is defined as:

Dα(P,Q) =
1

α− 1
EQ

[(
dP

dQ

)α]
.

For every α, Dα(P,Q) = 0 if and only if P = Q. Furthermore, the map α→ Dα is nondecreasing,

and left continuous. The special case where α = 1 is the celebrated Kullback-Leibler divergence:

D1(P,Q) = EQ
[
dP

dQ
log

(
dP

dQ

)]
.

2.4.3.2. Robust Bounds on Probabilities. We denote by Pref the reference probability measure

chosen using standard estimation procedures, as in Algorithm 3. Since this estimate is prone to

error, we consider all models that are nearby Pref according to the Renyi divergence for a chosen

α. Given a desired level of distance δ, and a quantile of interest xp, we consider an optimization of

the form:

Vα(δ) = sup{P (M > xp) : Dα(P, Pref ) ≤ δ}. (2.4.1)

As in [7], we choose α to satisfy the equation:

α

α− 1
|γref | = |γref |+ ε

where ε is half the width of the confidence interval obtain when estimating γref . This corresponds

to having the worst case distribution found from carrying out 2.4.1 for every value of xp belonging to

the domain of attraction with a shape parameter corresponding to the upper limit of the confidence

interval. Likewise, we can estimate the level of potentially model misspecification δ by comparing

the Pref to the realized distribution of maximums, that is

δ = Dα(P, Pref )
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and estimating α-divergence using the k-nearest neighbor algorithm of [53], with the realized values

M1, ...Mm as the sample for P and random samples from Pref . The k-nearest neighbor algorithm

can be summarized (in the univariate case) like so:

(1) Let X1, ..., Xn be a sample from Pref , andM1, ...,Mm. Let ρk(i) be the Euclidean distance

of the k-th nearest neighbor of Xi in the sample X1, ..., Xn and let νk(i) be the Euclidean

distance of the k-th nearest neighbor of Xi in the sample M1, ...,Mm.

(2) We calculate an asymptotically unbiased estimator of the α-divergence in the sense of [15]

with:

R̂α(Pemp, Pref ) =
1

n

n∑
i=1

(
(n− 1)ρk(i)

mvk(i)

)1−α
Bk,α

where Bk,α = Γ(k)2

Γ(k−α+1)Γ(k+α−1) .

(3) The Renyi divergence of degree of α can be found by substituting:

D̂α(Pemp, Pref ) =
1

α
log R̂α(Pemp, Pref ).

At this point, we can now solve for the worst-case probability, pθx = θxpx, where θx is the solution

to:

Pref (x,∞)φα(θx) + Pref (−∞, x)φα

(
1− θxPref (x,∞)

Pref (−∞, x)

)
= δ̄ (2.4.2)

where

φα(x) =


xα , α > 1

x log x α = 1

δ̄ =


exp((α− 1)δ α > 1

δ α = 1

2.4.3.3. Climate Risk Robustification Procedure. We can now apply these techniques to produce

robust bounds for the price of a mine. We look at the rainfall data for a site prior to the mine’s

construction, and calibrate a GEV distribution to the annual block maxima. We can then calculate

an appropriate α-divergence using the methods suggested in the previous section. Given a tolerance
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Algorithm 4 Estimate (Vup, Vdown)for a mine
Given failure level p, Pricing Engine G(p) for the mine, and annual block maxima for precipitation
at the mine site: M1, ..Mm

Step 1: Calibrate a reference GEV distribution Pref . Find (1− p)th quantile xp of Pref .
Step 2: Choose α such that α

α−1 |γref | = |γref |+ ε where ε is 1
2 of the width of the 95% confidence

interval for γref obtained from the estimation procedure.
Step 3: Calculate δ as the estimate of Dα(P, Pref ) using the k-nearest neighbors algorithm.
Step 4: Find (p∗w, p

∗
b) = sup / inf{P (M > xp) : Dα(P, Pref ) ≤ δ}

Step 5: Find best and worst case prices (V ∗w , V
∗
b ) = (G(p∗w), G(p∗b))

Return (G(p∗w), G(p∗b))

threshold for the an extremal climate event, 1-in-1
p year, we can then calculate a worst-case and best-

case robust threshold (p∗w, p
∗
b) for the annual probability of failure for a mine, using the optimization

procedure (2.4.2). The mine can then be re-priced using the real options methodology in from

Section 2.3.1, using the disaster probabilities (p∗w, p
∗
b). We summarize this procedure in Algorithm

4.

2.4.4. Calibration Procedure. Alternatively, we recommend a calibration procedure for the

robustification parameter δ, once a GEV model has been fit and α has been chosen. Seeing actual

values of mines is rare; it generally only occurs when the owner of the mine sells their stake (or a

part thereof).

We assume that mines are priced somewhat consistently across time by the market as a function

of spot price, interest rates, lease rates, volatility etc. For a sample of mines, we use a fixed baseline

disaster process (or we can make the baseline disaster processes bespoke for each mine, using a very

coarse estimate from failures at similar mines). Then we price the mines using the robustification

procedure above, and find the value of δ that covers all of the mines, or perhaps covers some

percentage of the sample (say 90%). More formally, for a set of mines with market prices Mi

observed on date di with sport Si, interest rate ri, lease rate di, and market implied volatility (from

a 3-month at-the-money, or ATM, options) σi, and letting Uδ be the set of all probability measures

such that KL(P |P∗) ≤ δ , let

[Pmin,i(δ), Pmax,i(δ)] = min /max
P∈Uδ

EP [H(Si, Di, φ)]

δi = inf{δ ≥ 0 : Pmin,i(δ) = Mi or Pmax,i(δ) = Mi}

δ = max{δ1, ..., δn}.
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Mine Date Transaction Value Interest Reserves Capacity Cost

Pinto Valley 4/1/13 650 100% 1683 62 236

Candelaria 11/1/14 1800 80% 4422 148 185

Los Bronces 8/1/12 890 4% 62591 400 141

Condestable 3/1/12 218 46% 423 20 181

Palabora 12/1/12 489 75% 355 51 24

Carmen 6/1/11 368 46% 609 56 175

Batu Hijau 5/1/11 247 7% 3730 109 194

OK Tedi 1/1/11 335 18% 2215 101 173

Las Cruces 11/1/10 552 30% 1746 72 143
Table 2.14. Transactions

2.4.5. Results. We now consider a selection of M&A (Mergers and Acquisitions) transactions

of copper mines from 2010 through 2014. In order to qualify, the transaction had to have a value of

over $200, 000, 000 and the project had to derive over 90% of its revenues from copper, as well as

having available cost and and reserve data available.

We used to following market inputs: For the risk-free interest rate, we used the ten year treasury

rate on the first market day of the month of the transaction. Implied volatility was the 90 day at

the money volatility on the first market day of the month of the transaction. The lease rate was

assumed to be a constant 2%, and the tax rate was assumed to be 38% (these were values were

chosen in consultation with a market expert). The base model had shock arrivals were simulated

from a Poisson Process with an average of one arrival every 40 years. Closures were assumed to be

permanent with no additional losses. See Table 2.14 for the transactions and Table 2.15 for market

data. We record the theoretical prices without shocks, with baseline shocks, and with the robust

shocks in Table 2.16. See Table 2.17 for the robustification parameters used in the procedure.
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Mine Copper Price Implied Volatility 10-yr Treasury

Pinto Valley 7509.75 17.6 1.83

Candelaria 6761.5 16.8 2.34

Los Bronces 7418.24 23.1 1.52

Condestable 8625 29.1 2.03

Palabora 7996.5 24.3 1.63

Carmen 9066.9 31.4 2.96

Batu Hijau 8931.7 26.8 3.31

OK Tedi 9553.2 33.9 3.36

Las Cruces 8289.7 30.2 2.66
Table 2.15. Market Data

No Shocks Shocks Robust Transaction Value Calibrated Delta

Pinto Valley 831.4 791.8 492.4 650 .055

Candelaria 1936.5 1836.9 1489.1 1800 .05

Los Bronces 1331.5 1061.1 374.3 890 <.001

Condestable 234.2 224.2 141.3 218 <.001

Palabora 517 511.7 467.5 489 .07

Carmen 395.6 387.9 370.3 368 .06

Batu Hijau 308.7 287.3 183 247 .02

OK Tedi 600.9 575.4 385.2 335 .3

Las Cruces 671.8 640.8 544.1 552 .17
Table 2.16. Theoretical Prices

2.5. Valuation of Antamina Copper Mine

2.5.1. Standard Model. We present in this section a valuation of the Antamina Copper

Mine using the Standard Real Options model - that is, without any sort of failure process. In this

framework, a mine can be described using the following parameters:

• An initial cost of extraction C per unit

• An initial level of reserves Q

• A fixed rate of extraction q

• The maintenance cost for a closed mine M
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α δ θ

Pinto Valley 1.11 .23 12

Candelaria 1.89 .16 5.4

Los Bronces 1.16 .16 9.2

Condestable 3.76 1.89 13.6

Palabora 1.15 .21 10.7

Carmen 1.81 .05 3.5

Batu Hijau 1.25 .16 8.2

OK Tedi 1.05 .19 11.3

Las Cruces 2.48 .19 4.5
Table 2.17. Robustification Parameters

• The costs of switching between open and closed states K1 and K2

• A rate of cost growth π

• A tax rate tr

The following values are extracted from the market:

• The cost of the underlying asset S

• The risk-free interest rate r

• The borrowing cost for the underlying asset d

• The volatility of the underlying asset σ

See Table 2.18 for the values used to price the mine. We vary S and σ to give some intuition about

the behavior of the model. The mine is then valued as an option using the optimal extraction

strategy given that is has three states:

(1) Open, in which the owner receives cashflow q(S − c)dt

(2) Closed, in which the owner pays −Mdt

(3) Abandoned, where the value of the mine goes to zero but cannot be re-opened. It is possible

to set a renumeration cost for this state as well.

In order to price the mines, we varied S from $2.5mm/kt to $7mm/kt and σ from 10% to 25%.

Prices are in Table 2.19.

2.5.2. Valuation using Robust Real Options Model with Failures.
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Parameter Value

C $1.66mm/kt

Q 5600(kt)

q 400(kt/yr)

M $135mm/yr

K1,K2 0

π 3%

tr 40%

r 2.2%

d 1.5%

Table 2.18. Mine Valuation Parameters

σ

S(0) 0.1 0.15 0.2 0.25

2.5 2004.2 2192 2334.7 2487.2

3 3413.3 3523.2 3678.1 3730.7

3.5 4897.3 4958.3 5065.4 5058.7

4 6429.5 6434 6505.1 6485.1

4.5 7896.4 7945.2 7965.4 8025.6

5 9431.5 9453.1 9204.1 9347.9

5.5 10950 10931 10810 10650

6 12457 12380 12241 12177

6.5 14016 13656 13532 13536

7 15464 15398 15060 15003
Table 2.19. Mine Prices in mm USD

2.5.2.1. Robustifying Precipitation-Based Disaster Risk. We observe the time series of precip-

itation at the mine site, and calibrate a GEV model as would be done by the engineers building

such a mine. As construction was started in 1998, we look at the annual precipitation maxima from

1977-1997 to calibrate our reference GEV model, as well as the case where the mine was fitted with

the complete rainfall data going back to 1900. We look also look at the cases where the mine was
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1977-1997 1900-1997

γ .16 −.17

σ .05 .067

µ .68 .65

q.99 1.03 .87

q.98 .96 .845
Table 2.20. Estimated GEV Parameters

1977-1997 1900-1997

α 1.38 2.75

δ .21 .31

worst case misspecification for 1 in 50 year event .124 .08

worst case misspecification for 1 in 100 year event .089 .062
Table 2.21. GEV distribution robustification

built to a 1-in-100 year specification, as well as 1-in-50 year specification. See Table 2.20 for the

calibration of the GEV models on the two data sets.

Once the data has been chosen, we estimate the α-divergence of the data from the calibrated

model (α is chosen using the confidence intervals from the estimation process for shape parameter

γ), and estimate a worst-case probability of exceedance over all models within this distance from

the reference (calibrated) distribution. We report the robustification parameters and the worst-case

exceedances for both levels and both training sets of data in Table 2.21.

2.5.2.2. Pricing Using the Robust Real Options Model. We now incorporate failure events into

the real options model. The failure events are simulated from a Poisson process with the intensity

q∗p where p is the risk assumed by the mine’s engineers, in this case p = 1
50 or p = 1

100 . The values

for q∗p can be seen in Table 2.21 for the two different reference distribution calibrations. When the

failure event occurs, the value of the mine goes to zero and no future cashflows can be extracted

from it. It is possible to include in this framework a further penalty, but because of the difficult of

estimating such a cost, we omit it for now. The prices we obtain from this methodology using the

1977-1997 data set and the 1900-1997 data set are summarized in Tables 2.22 and 2.23 respectively.

As we can see, since the mine is effectively deep in the money for all of these spot values, the mine
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p = .02/q∗p = .124 Sigma

S 0.1 0.15 0.2 0.25

2.5 1074 1141.2 1171.2 1265.8

3 1810.9 1835 1887.1 1914.6

3.5 2579.7 2595.2 2642 2650.1

4 3333.9 3368.6 3370.5 3387.4

4.5 4119 4126.4 4124.1 4169.1

5 4843.4 4866 4871.1 4897.1

5.5 5646.1 5603.6 5631.3 5621.9

6 6359.9 6386.4 6336.4 6376.2

6.5 7151 7128.8 7173.4 7152.9

7 7912.8 7901.7 7939.7 7913.8

p = .01/q∗p = .089 Sigma

S 0.1 0.15 0.2 0.25

2.5 1251.9 1341.8 1445 1492

3 2121.3 2176.8 2214.9 2343

3.5 3005.1 3060.1 3098.2 3091.5

4 3901.2 3958.4 3925.7 4082.6

4.5 4835 4818.2 4802.3 4910.4

5 5767.8 5753.4 5719.2 5805.6

5.5 6651.6 6582.3 6627 6725.7

6 7522.4 7485.3 7532.4 7542.9

6.5 8488.2 8347.4 8438.3 8341.6

7 9297.1 9312.8 9247.7 9273.3
Table 2.22. Robustified Lower Bounds of Mine Prices calibrated from 1977-1997

price is in fact, rather linear with regards to spot, with the option premium decaying slightly with

increased volatility for the deepest in-the-money mines.

Since the greatest degree of convexity is demonstrated around the “strike price”, i.e., the cost of

production, we record the behavior of the mine value around this area (i.e. for much lower prices)

to illustrate the convexity demonstrated in the real options models, as well as the values of mines

where the cost of production exceeds the cost of copper. See Figures 2.1 and 2.2 for a visualization
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p = .02/q∗p = .08 Sigma

S 0.1 0.15 0.2 0.25

2.5 1319.6 1405.7 1491.8 1548.4

3 2207.6 2275.8 2317.5 2385.9

3.5 3128.9 3209 3231.4 3288.4

4 4058.5 4120.6 4197.4 4152.5

4.5 5070.4 5067.9 5077.2 5087

5 5964.9 5967 6021.8 6010.8

5.5 6966.2 6961 6930.9 6960.6

6 7896.3 7946.8 7772.2 7899.8

6.5 8821.8 8776.2 8730.5 8869.8

7 9758.1 9825 9694.5 9690.6

p = .01/q∗p = .062 Sigma

S 0.1 0.15 0.2 0.25

2.5 1425.8 1538.8 1669.9 1708.7

3 2427.6 2486.4 2555.9 2608.9

3.5 3442.2 3503.5 3522.5 3620.3

4 4494.7 4514.4 4561.1 4600.9

4.5 5544.4 5517.7 5522.2 5664.1

5 6591.4 6559.7 6576.5 6543.8

5.5 7681.2 7656.5 7621.2 7562.4

6 8682.4 8730 8678.1 8592.5

6.5 9772.8 9721.8 9683.2 9558.7

7 10766 10711 10780 10716
Table 2.23. Robustified Lower Bounds of Mine Prices calibrated from 1900-1997

of the behavior of the model around this area. See Table 2.24 for a complete tabulation of the

maximum rainfall data from 1900-1998.

2.6. Discussion

In this section, we address a possible critique of this method, namely, that there may be issues

with the approach suggested in Algorithm 4for the calibration of the underlying GEV distribution,
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Figure 2.1. Price of Mine vs Spot and Volatility

Figure 2.2. Comparison of Mine Prices with and Without Failures

as it ignores potential issues with trending and general temporal dependence within the time series

at a mine site. We wish to emphasize, however, that this process can be viewed as a “black box”

- if we know that the procedure that was actually used by the mine engineers to be estimate the

failure threshold of the dam, then it is indeed appropriate to use that procedure to extract the
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Year Maximum Year Maximum Year Maximum Year Maximum
1900 1.69 1926 1.61 1952 1.59 1978 1.63
1901 1.66 1927 1.72 1953 1.82 1979 1.77
1902 1.69 1928 1.66 1954 1.63 1980 1.65
1903 1.62 1929 1.71 1955 1.69 1981 1.71
1904 1.58 1930 1.72 1956 1.74 1982 1.65
1905 1.74 1931 1.65 1957 1.69 1983 1.92
1906 1.56 1932 1.63 1958 1.73 1984 1.73
1907 1.73 1933 1.67 1959 1.67 1985 1.85
1908 1.75 1934 1.76 1960 1.57 1986 1.68
1909 1.62 1935 1.62 1961 1.71 1987 1.64
1910 1.71 1936 1.62 1962 1.78 1988 1.67
1911 1.60 1937 1.65 1963 1.61 1989 1.62
1912 1.64 1938 1.82 1964 1.63 1990 1.74
1913 1.57 1939 1.63 1965 1.64 1991 1.85
1914 1.49 1940 1.71 1966 1.82 1992 1.74
1915 1.72 1941 1.70 1967 1.72 1993 1.69
1916 1.53 1942 1.65 1968 1.75 1994 1.75
1917 1.71 1943 1.79 1969 1.65 1995 1.73
1918 1.64 1944 1.67 1970 1.66 1996 1.71
1919 1.72 1945 1.63 1971 1.61 1997 1.68
1920 1.64 1946 1.74 1972 1.66 1998 1.77
1921 1.67 1947 1.80 1973 1.60
1922 1.67 1948 1.71 1974 1.70
1923 1.62 1949 1.60 1975 1.71
1924 1.63 1950 1.69 1976 1.78
1925 1.68 1951 1.64 1977 1.62

Table 2.24. Rainfall Data

(appropriately de-trended) stationary values, fit the reference distribution, and calculate the Renyi

divergence from the (de-trended) empirical data. The simulations used to price the mine can then

be performed using a corrected simulation process that will incorporate the temporal dependence

in the failure process by increasing the location parameter for each time period. However, in the

case that the threshold was estimated using a shorter time series, it is likely that trending and

temporal dependence were not appropriately accounted for. In order to demonstrate the efficacy of

even the naive robustification procedure (without accounting for trending), we conduct the following

experiment:
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Mine Robust Probability Trending Probability
Alumbrera .0874 .0005
Bagdad .0366 .0163
Bolivar .0649 .0752

Centinela Oxide .0451 .0371
Chapada .0566 .0558
Chino .0401 .0220

Copper Mountain .1503 .0054
Cozamin .0603 .0532
El Abra .1260 .0094
Gibralter .0502 .0214
Hucklberry .0400 .0377

Los Pelambres .0348 .0279
Michilla .0465 .0008
Milpillas .0297 .1365
Minto .1102 .0035

Mount Polley .1425 .0033
Piedras Verdes .0516 .0170

Robinson .0994 .0137
Safford .0581 .0199
Sierrita .0471 .0255
Tyrone .0701 .022
Zaldivar .0962 0

Table 2.25. Comparison of Robust Failure Probabilities with Trending Failure Probabilities

(1) For the 22 mine sites used in Chapter 4, we use 30 years of data to fit a naive model and

calculate a failure threshold from the 99% quantile of the reference distribution, and a

robust (annualized) probability of failure.

(2) For the same sites, we look at a 60 year time series of data. We de-trend the same data

set by fitting a regression model of the precipitation maxima against time for each mine

site, and subtract the corresponding expected value from each point to create a stationary

series. We then use maximum likelihood to estimate parameters for a GEV distribution

for each mine site.

(3) Incorporating this calibration, and the corresponding trend, we calculate the probability

of failure over the life of a 20 year mine, and then convert this probability of failure to an

annualized probability. See Table 2.25 for a comparison. In the vast majority of cases, the

robust probability exceeds this level.
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CHAPTER 3

Estimation of Sparse Covariance Matrices For Max-Stable Fields

3.1. Introduction

3.1.1. Motivation. For pricing and hedging purposes, estimating disaster risk at only a par-

ticular location may be sufficient to price using the real option model discussed in Chapter 2. In

order to understand the complete risk profile of a particular portfolio of mines, it is necessary to

estimate the joint distribution of the extremes of climate events for the whole portfolio of mines.

When extremal climate events occur, there is a great deal of a probability of contagion, particularly

within a specific region. It is known that the correlation structure within the tails of climate-driven

processes is much different than that of the regular, daily observations [58]. Of course, by the nature

of extremes, the number of observations will be very low, which will be an issue when the dimension

of the problem grows; that is, when the size of the portfolio is large, the number of correlation

parameters that needs to be estimated will be far greater than the number of observations. Fortu-

nately, recognizing this, many reasonably large operators of mines will have some form of geographic

diversification within their portfolio of mines; but owing to the advantages of having familiarity with

the regulatory structure, geology, and working conditions in a particular area, it is reasonable to

assume that there will be some “blocks” within the portfolio of mines in similar locations. This leads

to essentially a block structure (modulo a permutation) for the covariance matrix of precipitation

across mines, enforcing a natural sparsity constraint that we can exploit to efficiently estimate the

underlying covariance structure of the maxima.

In general, even when the dimensionality of the problem is not too large, the problem of esti-

mating a parametric form of max-stable is extremely difficult, owing in part to the aforementioned

scarcity of data due to the nature of extreme events, and also due to the general intractability of the

likelihood. For an arbitrary model, in order to evaluate the likelihood, it is necessary to compute a

sum over all the partitions of the set {1, ..., d} where d is the dimension of the data. The cardinality

of this set grows super-exponentially, and is currently completely intractable for dimension greater
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than 12 or 13. For a more complete discussion of this, see [23, 22, 13]. The authors of [23] suggest

a stochastic EM algorithm approach that overcomes this problem in certain cases; however, for a

broad class of models, the lack of a closed-form (or similarly tractable) solution for arbitrary higher-

order partial derivatives of the exponent measure make this methodology impractical to implement.

For example, it is ideal for a multivariate logistic max-stable distribution, but for models with an

underlying normal process, it is ill-suited. Moreover, we are not able to exploit the natural sparsity

found in most realistic portfolio compositions.

The most common approach to fitting a max-stable vector is the pairwise likelihood approach,

proposed by [51], which is done by combining the bivariate densities of specific pairs of observations.

Although this method is computationally tenable and has many attractive properties of the MLE

(namely consistency), however, there is a severe loss of efficiency that becomes more apparent in

higher dimensions [39]. A number of more efficient methods, triplewise and higher-order composite

likelihoods are investigated by [29, 39, 38, 22], but the trade-off between computational efficiency

and statistical efficiency is poor, and the correct method of choosing higher-order components is

unclear.

3.1.2. Formulation of the Problem. We consider a sequence of independent p-dimensional

Gaussian random vectors (Xn), with mean 0 and covariance ΣCOV , and a renewal sequence An =

τ1 + ...+τn, n ≥ 1, where (τi) is an i.i.d. sequence of exponential random variables with expectation

1, independent of (Xn). The Xn can be viewed as realizations of a Gaussian random field, sampled

at a discrete set of p points. Under certain conditions, we will provide a method of estimating the Σ

for realizations of the random variable M in Rp, where, the i-th entry of M , namely M(i), satisfies:

M(i) = sup
n≥1
{− logAn +Xn(i)}

when the dimension p of X and M, is high. The vector M is max-stable in the sense of [19].

This process has Gumbel marginals and given that is has an actual covariance structure (unlike its

heavy-tailed analogues), it will provide a method to use concepts such as sparsity in our estimates.

In general, the link function between the covariance matrix of the underlying normal field

and the corresponding max-stable field is unknown. Moreover, since sample data will consist of

block maxima, data sets will typically consist of a relatively small number of observations. As the
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dimension of the data grows, we potentially run into issues with overdetermination; that is, the

number of parameters being estimated approaches or exceeds the number of observations. We are

able to remedy these two issues as follows:

(1) Using the exact simulation technique for max-stable fields developed by [45], we are able to

estimate the relationship between the correlation of the underlying normal field and the resulting

max-stable field.

(2) Once the correlation matrix of the underlying process has been estimated, we are then able

to use techniques from correlation matrix estimation, like those in [44, 62], which enforce sparsity

in the correlation matrix but ensure that the estimated matrix is positive-definite.

3.2. Notation and Preliminaries

We will denote the covariance matrix of X as ΣCOV , the correlation matrix of X as Σ, and the

correlation matrix of M as ΣM .

For each pair of coordinates, the correlation of between M(i) and M(j) will be determined

entirely by the correlation between X(i) and X(j). We define the function cM as the function

that determines this transformation. That is, if ρ is the correlation between X(i) and X(j), then

cM (ρ) is the correlation between M(i) and M(j). We define the corresponding transformation for

correlation matrices as CM (·), where CM (Σ) is the matrix with cM (Σ(i, j)) on all the off-diagonal

elements (the diagonal elements remain 1, clearly). Since we do not have a closed-form solution

for this, we produce an empirical approximation to the function cM (ρ) using the exact simulation

algorithm of [45]. We denote by c−1
M (·) the inverse of cM (·), and C−1

M (·) is c−1
M (·) applied component-

wise on the off-diagonal elements of a matrix. Since this algorithm can be run uniformly in ρ, we

can use the same random numbers to generate samples for every value of ρ. For practical purposes,

this was done on a grid and gaps were filled in with piecewise linear interpolation. See Figure 3.1

for a graphical representation of this function.

We also make use of the follow notation: for a matrix A, Λmin(A) and Λmax(A) are the smallest

and largest eigenvalues of A, respectively. We let ‖A‖1 =
∑

i,j |A (i, j)|, ‖A‖22 = Λmax
(
ATA

)
,

‖A‖2F =
∑

j,k A (j, k) 2. We define ‖A‖1,off as the `1-norm on the equivalence classes of matrices

with the same off-diagonal elements, namely: ‖A‖1,off =
∑

i 6=j |A (i, j)|. Likewise, we use ‖A‖∞,off
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as the `−∞ normal on the equivalence classes of matrices with the same off-diagonal elements, that

is ‖A‖∞,off = maxi 6=j |A (i, j)|. We use SM to denote the sample correlation matrix of the random

variables M . Finally, we let H : Rp×p → Rp×p be defined as the function that returns the matrix

with the coordinates:

H(A)(i, j) = A(i, j)1{A(i,j)>0}.

We consider two estimators of sparse correlation matrices. First, we consider the naive problem,

the Soft-Thresholding Operator (STO), proposed by [56], given a correlation matrix S with `1

penalty:

Σ̂STO (S, λ) = argminΣ

1

2
‖S − Σ‖2F + λ ‖Σ‖1,off (3.2.1)

which has the closed-form solution:

Σ̂STO(S, λ) =


sign (S (j, k)) ·max {|S (j, k)| − λ, 0} , j 6= k

S (j, k) otherwise
.

While simple and efficient, it contains no guarantee of positive-definiteness.

We next consider the EC2 estimator of [44], which is an expansion of the STO method by adding

a positive eigenvalue constraint.

Σ̂EC2 (S, λ, τ) = argminΣ(j,j)=1

1

2
‖S − Σ‖2F + λ ‖Σ‖1,off

s.t. τ ≤ Λmin (Σ) . (3.2.2)

This is solved algorithmically using an iterative procedure. See the Appendix for details.

3.3. Estimating Σ for the max-stable vector

Let M1, ...MN be a set of sample data from the category of max-stable vectors introduced in

the introduction. Let SM be the sample correlation matrix of the Mi.

We note that the problem of estimating the correlation matrix Σ is equivalent to estimating

the covariance matrix ΣCOV , as we can standardize the data to match the mean and variance of a

standard Gumbel distribution. We present here three estimators that are asymptotically consistent

and efficiently estimate the correlation structure of the underling Gaussian distribution.
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Estimator 1: STO for Max-Stable Correlations (STO-MS). The most basic estimator

that we consider is a modified version of the soft thresholding estimator. We consider the following

optimization:

Σ̂STO−MS (SM , λ) = argminΣ(j,j)=1

1

2
‖CM (Σ)− SM‖2F + λ ‖CM (Σ)− CM (I)‖1,off

which has the following closed-form solution:

Σ̂STO−MS (SM , λ) =


c−1
M (sign (SM (j, k)− CM (0)) ·max {|SM (j, k)| − λ, 0}) , j 6= k

1 otherwise
.

Estimator 2: STO for Max-Stable Correlations in Normal Space (STO-NS). The

next estimator we consider is soft thresholding performed in the space of normal correlations:

Σ̂STO−MSN (SM , λ) = argminΣ(j,j)=1

1

2

∥∥Σ− C−1
M (SM )

∥∥2

F
+ λ ‖Σ‖1,off

which has the following closed-form solution:

Σ̂STO−MSNSM , λ) =


sign(c−1

M (SM (j, k))) ·max{|c−1
M (SM (j, k))| − λ, 0} , j 6= k

1 otherwise
.

Estimator 3: STO with Two Sided Shrinkage (STO-SN). The next estimator shrinks on

both sides to account for the difference in behavior of the transformation function cM (·) for positive

and negative values:

Σ̂STO−TS(SM , λ1, λ2) = argminΣ(j,j)=1

1

2
‖SM − CM (Σ)‖2F + λ1 ‖H(CM (Σ)− CM (I))‖1,off

+ λ2 ‖H(CM (I)− CM (Σ))‖1,off
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which has the closed-form solution:

Σ̂STO−TS(SM , λ1, λ2) =



c−1
M (sign(SM (j, k)− cM (0))

·max{|SM (j, k)| − λ1, 0})1{Sij>cm(0)}

+c−1
M (sign(SM (j, k)− cM (0))

·max{|SM (j, k)| − λ2, 0})1{Sij<cm(0)} , j 6= k

1 otherwise

.

Estimator 4: EC2 With Transformed Correlation in Normal Space (EC2-NS). Our

first method inspired by the EC2 estimator [44] is simply to apply the EC2 estimator on the

transformation C−1
M (SM ) of the sample covariance matrix SM into the space of normal coordinates:

Σ̂EC2−NS(SM , λ, τ) = argminΣ(j,j)=1

1

2

∥∥Σ− C−1
M (SM )

∥∥2

F
+ λ ‖Σ‖1,off

s.t. τ ≤ Λmin(Σ) (3.3.1)

where λ > 0 is a regularization parameter, and τ > 0 is the minimal eigenvalue, which will guarantee

the positive definiteness of the solution. The drawback of the EC2-NS estimator is that since it

penalizes differences from zero in normal space, shrinkage is much more sharp for negative corre-

lations, that is, when shrinkage is applied in the space of normal correlations, which may not be a

desired property.

Estimator 5: EC2 on Transformed Correlation in Max-Stable Space (EC2-MS). The

next method considers shrinkage (and penalties) in the space of the max-stable coordinates, namely,

we solve the following minimization problem:

Σ̂EC2−MS(SM , λ, τ) = argminΣ(j,j)=1

1

2
‖CM (Σ)− SM‖2F + λ ‖CM (Σ)− CM (I)‖1,off

s.t. τ ≤ Λmin(CM (Σ)) (3.3.2)

While this estimator applies shrinkage in the space of the actual statistical error, that is, the error

in the correlations of the max-stable field, the shrinkage now cannot account differences in the

shrinkage that occurs the space of normal correlations. Moreover, there is no guarantee that the

estimator Σ̂ is positive-definite.
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Figure 3.1. Normal Correlations vs Max-Stable Correlations

Estimator 6: EC2 with Separate Shrinkage and Normal Eigenvalue Constraint

(EC2-SN). The next method corrects for the issues of the two previous estimators. Shrinkage

is applied in the space of max-stable correlations, with different shrinkage rates being applied to

correlations that correspond to positive and negative correlations in the space of normal correla-

tions. Moreover, the eigenvalue constraint is applied to the normal correlation matrix, to ensure

that the estimated matrix of interest is positive-definite:

Σ̂EC2−SN (SM , λ1, λ2, τ) = argminΣ(j,j)=1

1

2
‖SM − CM (Σ)‖2F + λ1 ‖H(CM (Σ)− CM (I))‖1,off

+ λ2 ‖H(CM (I)− CM (Σ))‖1,off

s.t. τ ≤ Λmin(Σ). (3.3.3)

As we shall see, the performance of the EC2SN dominates the performance of the other estimators

discussed.

3.4. Theoretical Results
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3.4.1. Results for EC2-MS Estimator. We denote by Uτ,CM (I)(q, c0(p),K) class of matrices

such that σ : Σ : |σ(i, j)| ≤ K for all i 6= j,max
i

p∑
j=1

|σ(i, j)− cM (0)|q ≤ c0(p)


as in [4]. See the Appendix for more details.

Let M be the max stable field generated from a sequence of i.i.d. Gaussian fields Z̃n with mean

0 and variance 1 everywhere, and renewal processes An, such that

M(t) = max
n≥1

{
− log(An) + Z̃n(t)

}
.

And we consider sampling this at two particular points, denotedM(1) andM(2), whereE[Z̃n(1)Z̃n(2)] =

ρ, where ρ ∈ [−1 + ε, 1− ε], where ε > 0. We can therefore represent Z̃n(1) and Z̃n(2) as

Z̃n(1) = Zn(1)

Z̃n(2) = ρZn(1) +
√

1− ρ2Zn(2)

where Zn(1) and Zn(2) are independent sequences of i.i.id standard normal random variables.

We introduce some further notation:

n? = argmaxNn=1

[
− log(An) + ρZn(1) +

√
1− ρ2Zn(2)

]
(3.4.1)

f(ρ) =

(
1,

ρ

(1− ρ2)1/2

)T
(3.4.2)

g(Zn, ρ) = Zn(1) +
ρ

(1− ρ2)
1
2

Zn(2) (3.4.3)

= f(ρ)T · Zn

where N is a finite number such that M(2) = maxNn=1[− log(An) + ρZn(1) +
√

1− ρ2Zn(2)] which

is independent of ρ and can be generated as in [45].

Lemma 1. Let M(1) and M(2) be samples from a max-stable field as defined above. Let ρ ∈

[−1 + ε, 1− ε] be the correlation of the processes Z̃n(1) and Z̃n(2) which generate M(1) and M(2).

Then E[ ∂∂ρM(1)M(2)] = ∂
∂ρE[M(1)M(2)] <∞.
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Proof. Now we consider the derivative of M(1)M(2) with respect to ρ:

∂

∂ρ
M(1)M(2) =

∂

∂ρ

N∑
n=1

M(1)(− log(An) + ρZn(1) +
√

1− ρ2Zn(2)) (3.4.4)

= M(1)

N∑
n=1

I(n = n?)g(Zn, ρ) (3.4.5)

where n? and g(Zn, ρ) are as in (3.4.1) and (3.4.3), respectively. Since Zn(1) and Zn(2) are con-

tinuous random variables, there are no ties, almost surely. Next, we bound it from above using

(3.4.5): ∣∣∣∣ ∂∂ρM(1)M(2)

∣∣∣∣ ≤ |M(1)|
N∑
i=1

|g(Zn, ρ)|

= |M(1)|
N∑
i=1

|f(ρ)T · Zn|.

Now, applying Cauchy-Schwarz, we get

|M(1)|
N∑
i=1

|f(p)T · Zn| ≤ |M(1)|
N∑
i=1

‖f(ρ)‖2 ‖Zn‖2

≤ |M(1)| ‖f(1− ε)‖2
N∑
i=1

‖Zn‖2 .

Since N has finite moments of all orders [45, 6], it is elementary to see that
∑N

i=1 ‖Zn‖2 likewise

has finite moments of all orders. Therefore,∣∣∣∣ ∂∂ρM(1)M(2)

∣∣∣∣
is bounded above by the integrable function

|M(1)| ‖f(1− ε)‖2
N∑
i=1

‖Zn‖2 ,

and therefore we can use the dominated convergence theorem to show:

∂

∂ρ
E[M(1)M(2)] = E

[
∂

∂ρ
M(1)M(2)

]
.

�
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Corollary 2. For all ε > 0, for ρ ∈ [−1 + ε, 1− ε], the function cM (ρ) is Lipschitz. Likewise,

c−1
M is Lipschitz for all ρ ∈ [cM (−1 + ε), cM (1− ε)].

Proof. Using Lemma 1 we have that∣∣∣∣∂cM∂ρ
∣∣∣∣ =

∣∣∣∣ ∂∂ρE[M(1)M(2)]

∣∣∣∣
=

∣∣∣∣E [ ∂∂ρM(1)M(2)

]∣∣∣∣
≤ E[|M(1)| ‖f(1− ε)‖2

N∑
i=1

‖Zn‖2]

≤ ‖f(1− ε)‖2

√√√√E[M(1)2]E[(

N∑
i=1

‖Zn‖2)2],

with the last inequality following from Cauchy-Schwarz. Once again, E[M(1)2] and

E[(
∑N

i=1 ‖Zn‖2)2] are finite, so the derivative of the function is bounded a compact set, and there-

fore Lipschitz. Likewise, since the function is invertible, and differentiable on the compact set

[−1 + ε, 1− ε], the inverse will differentiable on a compact, and also Lipschitz. �

Lemma 3. For sample correlation matrix Σ̂ with entries σ̂ij of a max-stable vector, and true

correlation matrix Σ (for the Gaussian generative process) with entries σij we have the following:

(i) max
i

p∑
j=1

|σ̂(i, j)− cM (0)| · 1(|σ̂(i, j)− cM (0)| ≥ λ, |cM (σ(i, j))− cM (0)| < λ)

= OP

(
c0(p)λ−q

(
p2/(1+γ)

n1/2

)
+ c0(p)λ1−q

)

(ii) max
i

p∑
j=1

|cM (σ(i, j))− cM (0)| · 1(|σ̂(i, j)− cM (0)| < λ, |cM (σ(i, j))− cM (0)| ≥ λ)

= OP

(
c0(p)λ−q

(
p2/(1+γ)

n1/2

)
+ c0(p)λ1−q

)

(iii) max
i

p∑
j=1

|σ̂(i, j)− cM (σ(i, j))| · 1(|σ̂(i, j)− cM (0)| ≥ λ, |cM (σ(i, j))− cM (0)| ≥ λ)

= OP

(
c0(p)λ−q

(
p2/(1+γ)

n1/2

))
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(iv)P (max
i,j
|σ̂(i, j)− cM (σ(i, j))| > t) ≤ p2KA(γ)

n−(1+γ)/2

t1+γ
.

Proof. Since we have E|Mi|2(1+γ) ≤ K for some γ > 0 for all i since all the Mi are Gumbel

distributions, then by Markov’s inequality, we have:

P (|σ̂(i, j)− cM (σ(i, j))| ≥ t) ≤ KA(γ)
n−(1+γ)/2

t1+γ

P (max
i,j
|σ̂(i, j)− cM (σ(i, j))| ≥ t) ≤ p2KA(γ)

n−(1+γ)/2

t1+γ

max
i,j
|σ̂(i, j)− cM (σ(i, j))| = OP

(
p2/(1+γ)

n1/2

)

when we choose tn = p2/(1+γ)

n1/2 . Using this result, the proofs of (i), (ii), and (iii) follow from substi-

tuting this inequality into the proofs of the analogous results of Gaussian random variables in [4],

which we will reproduce here in. For the notational simplicity, we denote the bounded terms in (i),

(ii), and (iii) as I, II, and III respectively.

First we consider (iii), and note that using (iv):

III ≤ max
i,j
|σ̂(i, j)− cM (σ(i, j))|max

i

p∑
j=1

|cM (σ(i, j))− cM (0)|qλ−q

= OP

(
c0(p)λ−q

(
p2/(1+γ)

n1/2

))
.

To place a bound on I, we split it into two terms:

I ≤ max
i

p∑
j=1

|σ̂(i, j)− cM (σ(i, j))| · 1(|σ̂ij − cM (0)| ≥ λ, |σij − cM (0)| < λ)

+ max
i

p∑
j=1

|σ(i, j)− cM (0)| · 1(|σ(i, j)− cM (0)| < λ)

= IV + V.

The second term V is bounded above:

V ≤ λ1−qc0(p).
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For IV, if we take a ∈ (0, 1):

IV ≤ max
i

∑
|σ̂(i, j)− cM (σ(i, j))| · 1(|σ̂(i, j)− cM (0)| ≥ λ, |σ̂(i, j)− cM (0)| ≤ aλ)

+ max
i

∑
|σ̂(i, j)− cM (σ(i, j))| · 1(|σ̂(i, j)− cM (0)| ≥ λ, aλ < |σ̂(i, j)− cM (0)| ≤ λ)

≤ max
i,j
|σ̂(i, j)− cM (σ(i, j))|max

i

p∑
j=1

1(|σ̂(i, j)− cM (σ(i, j))| > (1− a)λ)

+ c0(p)(at)−q max
i,j
|σ̂(i, j)− cM (σ(i, j)|.

We note then that:

P [max
i

p∑
j=1

1(|σ̂(i, j)− cM (σ(i, j))| > (1− a)λ) > 0]

= P (max
i,j
|σ̂(i, j)− cM (σ(i, j))| > (1− a)λ)

≤ p2KA(γ)
n−(1+γ)/2

((1− a)λ)1+γ
.

Then, if

2 log(p)− (1 + γ) log(
√
nλ)→ −∞,

we have that

IV = OP

(
c0(p)λ−q

(
p2/(1+γ)

n1/2

))
.

Combining IV and V, we are able to bound I:

I = OP

(
c0(p)λ−q

(
p2/(1+γ)

n1/2

)
+ c0(p)λ1−q

)
,

Finally, from term (ii), we have that:

II ≤ max

p∑
j=1

(|σ̂(i, j)− cM (σ(i, j))|+ |σ̂(i, j)− cM (0)|)

· 1(|σ̂(i, j)− cM (0) < λ, |cM (σ(i, j)− cM (0) > λ)

≤ max
i,j
|σ̂(i, j)− cm(σ(i, j))

p∑
j=1

1|σ(i, j) ≥ λ)
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+ λmax
i

p∑
j=1

1(|cM (σ(i, j)− cM (0)| ≥ λ)

≤ OP

(
c0(p)λ−q

(
p2/(1+γ)

n1/2

)
+ c0(p)λ1−q

)
.

�

Theorem 4. Suppose M1, ...Mn are a sample from a max-stable vector as above with mean

vector 0 and correlation matrix Σ, where the correlation terms ρij are bounded above by (1− ε). We

define the estimators

Σ̂STO(M) = argminΣjj=1

1

2
‖SM − Σ‖2F + λ ‖Σ− CM (I)‖1,off (3.4.6)

= C−1
M (Σ̂STO−MS(SM , λ)) (3.4.7)

Then, uniformly on Uτ (q, c0(p), 1− ε) for sufficiently small ε, if λn = cp
2/(1+γ)

n1/2 , then

∥∥ ˆΣSTO(M)(SM , λn)− CM (Σ)
∥∥

2
= Op

(
co(p)

(
p2/(1+γ)

n1/2

)
1−q

)
∥∥ ˆΣSTO−MS

C (SM , λn)− Σ
∥∥

2
= Op

(
co(p)

(
p2/(1+γ)

n1/2

)
1−q

)
.

Proof. This proof follows closely the approach of [56]. Denote the component-wise transfor-

mation of ΣSTO(M)(SM , λ) as sλ(z). Note that we have:

(i)|sλ(z)− cM (0)| ≤ |z − cM (0)|

(ii)sλ(z) = 0 if |z − cM (0)| ≤ λ

(iii)|sλ(z)− z| ≤ λ.

Also note that for the operator norm:

‖A‖2 ≤ max
i

∑
j

|a(i, j)|.
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Consider the decomposition

∥∥ΣSTO(M)(SM , λ)− CM (Σ)
∥∥

2
≤
∥∥sλ(CM (Σ))− CM (Σ)

∥∥
2

+
∥∥ΣSTO(M)(SM , λ)− sλ(CM (Σ))

∥∥
2
. (3.4.8)

For the first term in (3.4.8), we have that:

p∑
j=1

|sλ(σ(i, j))− σ(i, j)| ≤
p∑
j=1

|σ(i, j)− cM (0)| · 1(|σ(i, j)− cM (0)| ≤ λ)

+ λ

p∑
j=1

1(|σ(i, j)− cM (0)| > λ)

=

p∑
j=1

|σ(i, j)− cM (0)|q|σ(i, j)− cM (0)|1−q · 1(|σ(i, j)− cM (0)| ≤ λ)

+

p∑
j=1

λqλ1−q · 1(|σ(i, j)− cM (0)| > λ)

≤ λ1−q
p∑
j=1

|σ(i, j)− cM (0)|q

≤ λ1−qc0(p).

We can decompose the second term in (3.4.8) using (i) and (ii):

|sλ(σ̂(i, j))− sλ(σ(i, j))| ≤ |σ̂(i, j)− cM (0)|

· 1(|σ̂(i, j)− cM (0)| ≥ λ, |σ(i, j)− cM (0)| < λ)

+ |σ(i, j)− cM (0)| · 1(|σ̂(i, j)− cM (0)| < λ, |σ(i, j)− cM (0)| < λ)

+
(
|σ̂(i, j)− σ(i, j)|

+ |sλ(σ̂(i, j))− σ̂(i, j)|+ |sλ(σ(i, j))− σ(i, j)|
)

· 1(|σ̂(i, j)− cM (0)| ≥ λ, |σ(i, j)− cM (0)| ≥ λ). (3.4.9)

60



The first four three terms of (3.4.9) are bounded using Lemma 3. For the fourth term, we apply

property (iii) of the thresholding operator:

max
i

p∑
j=1

|sλ(σ̂(i, j))− σ̂(i, j)| · 1(|σ̂(i, j)− cM (0)| ≥ λ, |σ(i, j)− cM (0)| ≥ λ)

≤ max
i

p∑
j=1

λqλ1−q| · 1(|σ̂(i, j)− cM (0)| ≥ λ, |σ(i, j)− cM (0)| ≥ λ)

≤ λ1−q max
i

p∑
j=1

|σ(i, j)− cM (0)|q · 1(|σ(i, j)− cM (0) ≥ λ)

≤ λ1−qc0(p).

By a similar argument, for the fifth term of (3.4.9):

max
i

p∑
j=1

|sλ(σ(i, j))− σ(i, j)| · 1(|σ̂(i, j)− cM (0)| ≥ λ, |σ(i, j)− cM (0)| ≥ λ)

≤ λ1−qc0(p).

Combining all terms, can see that:

∥∥ΣSTO(M)(λ)− CM (Σ)
∥∥

2
= Op

(
c0(p)(λ1−q + λ−q

p2/(1+γ)

n1/2

)
.

The first part of the theorem follows by substituting λn = p2/(1+γ)

n1/2 . The second part of the theorem

follows from the fact that C−1
M is Lipschitz in the operator norm on the space Uτ (q, c0(p), 1− ε) as

in Lemma 2. �

Theorem 5. Suppose M1, ...Mn are a sample from a max-stable vector as above with mean

vector µ and correlation matrix Σ, where the correlation terms ρij are bounded above by (1 − ε).

Let δmin be the minimal eigenvalue of CM (Σ). Let ΣEC2−MS(SM , λ, τ) be the estimator defined in

(3.3.2). Let Nd be the of nonzero elements in Σ. Then with λ = c3(p
2/(1+γ)

n1/2 )1−q, and τ ≤ δmin, we

have that:

∥∥Σ̂EC2−MS(SM , λ, τ)− CM (Σ)
∥∥
F

= OP

(
c0(p)

√
Nd

(
p2/(1+γ)

n1/2

)
1−q

)
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Proof. The proof follows closely to that of Theorem 4.3 in [44]. To simplify the notation, we

refer to Σ̂EC2−MS(SM , λ, τ) as Σ̂ throughout the proof.

Since τ ≤ δmin, then CM (Σ) is a feasible solution to (3.3.2), so we have

1

2

∥∥∥S − Σ̂
∥∥∥2

F
+ λ

∥∥∥Σ̂− CM (I)
∥∥∥

1,off
≤ 1

2
‖S − CM (Σ)‖2F + λ ‖CM (Σ)− CM (I)‖1,off .

Letting ∆ = Σ̂− CM (Σ), after simple manipulation we have:

0 ≥ 1

2
‖∆‖2F −

〈
S − Σ,∆

〉
+ λ ‖CM (Σ) + ∆− CM (I)‖1,off − λ ‖CM (Σ)− CM (I)‖1,off (3.4.10)

where
〈
·, ·
〉
denotes the inner product associated with the Froebenius norm. Let E be the set of all

matrices Rdxd that has zeroes on the same entries as the zeros of Σ. Let E⊥ = Rdxd\E . We denote

AE as the projection of matrix A onto E , and AE⊥ = A−AE . Then we have:

‖CM (Σ) + ∆− CM (I)‖1,off = ‖CM (ΣE) + CM (ΣE⊥) + ∆E + ∆E⊥ − CM (I)‖1,off

≥ ‖CM (ΣE)− CM (I)‖1,off + ‖∆E⊥‖1,off − ‖∆E‖1,off

− ‖CM (ΣE⊥)− CM (I)‖1,off − ‖CM (I)‖1,off .

Subtracting from ‖CM (ΣE)− CM (I)‖1,off, we can see that:

‖CM (Σ) + ∆− CM (I)‖1,off − ‖CM (Σ)− CM (I)‖1,off

≥ ‖∆E⊥‖1,off − ‖∆E‖1,off − 2 ‖CM (ΣE⊥)− CM (I)‖1,off − ‖CM (I)‖1,off . (3.4.11)

By the Cauchy-Schwarz Inequality, it follows that:

〈
S − CM (Σ),∆

〉
≤ ‖S − CM (Σ)‖∞,off ‖∆‖1,off . (3.4.12)

In the event that ‖S − CM (Σ)‖∞,off ≤ λ/2, we get by combining (3.4.10), (3.4.11), and (3.4.12):

0 ≥ 1

2
‖∆‖2F −

λ

2
(‖∆E‖1,off + ‖∆E⊥‖) + λ(‖∆E⊥‖1,off − ‖∆E‖1,off

− 2 ‖CM (ΣE⊥)− CM (I)‖1,off − ‖CM (I)‖1,off)
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=
1

2
‖∆‖2F −

3λ

2
‖∆E‖1,off +

λ

2
‖∆E⊥‖1,off

− 2λ(‖CM (ΣE⊥)− CM (I)‖1,off)− λ ‖CM (I)‖1,off . (3.4.13)

Since ‖∆‖2F > 0, we have

‖∆E⊥‖1,off − ‖CM (I)‖1,off ≤ 3 ‖∆E‖1,off + 4 ‖CM (ΣE⊥)− CM (I)‖1,off .

Combining this with (3.4.13), we have that:

‖∆‖2F ≤ 3λ ‖∆E‖1,off + 4λ ‖CM (ΣE⊥)− CM (I)‖1,off ≤ 3λ
√
ND ‖∆E‖F .

And therefore:

‖∆‖F ≤
‖∆‖2F
‖∆E‖F

≤ 3λ
√
ND.

Since ‖S − CM (Σ)‖∞,off is OP (co(p)(
p2/(1+γ)

n1/2 )1−q), it follows that

‖∆‖F =
∥∥∥Σ̂− CM (Σ)

∥∥∥
F

= OP

(
co(p)(

p2/(1+γ)

n1/2
)1−q

)
.

. �

3.4.2. Results for EC2-MS Estimator. The results for follow from a basic modification of

Lemma 3.

Lemma 6. For sample correlation matrix SM with entries σ̂(i, j), and underlying correlation

matrix Σ with entries σij we have the following:

(i)max
i

p∑
j=1

|c−1
M (σ̂(i, j))|1(|c−1

M (σ̂(i, j))| ≥ λ, |σ(i, j)| < λ)

= OP (c0(p)λ−q(
p2/(1+γ)

n1/2
) + c0(p)λ1−q)

(ii)max
i

p∑
j=1

|c−1
M (σ̂(i, j))|1(|c−1

M (σ̂(i, j))| < λ, |σ(i, j)| ≥ λ)

= OP (c0(p)λ−q(
p2/(1+γ)

n1/2
) + c0(p)λ1−q)
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(iii)max
i

p∑
j=1

|c−1
M (σ̂(i, j))|1(|c−1

M (σ̂(i, j))| ≥ λ, |σ(i, j)| ≥ λ)

= OP (c0(p)λ−q(
p2/(1+γ)

n1/2
))

(iv)P (max
i,j
|c−1
M (σ̂(i, j))− σ(i, j)| > t) ≤ p2KC(γ)

n−(1+γ)/2

t1+γ
.

Proof. These all follow from applying the Lipschitz property of c−1
M (·) from Corollary 2 to the

results in Lemma 3.

We present analogous results for the EC2−NS estimator: �

Theorem 7. SupposeM1, ...Mn are a sample from a max-stable vector as above with mean vector

0 and correlation matrix Σ, where the correlation terms Σ(i, j) are bounded such that |Σ(i, j)| <

(1 − ε) for some ε > 0. We consider the estimator Σ̂STO−NS defined in (3.4.7). Then, uniformly

on Uτ (q, c0(p), 1− ε) for sufficiently small ε, if λn = cp
2/(1+γ)

n1/2 , then

∥∥Σ̂STO−NS(λn)− Σ
∥∥

2
= Op

(
co(p)(

p2/(1+γ)

n1/2
)1−q

)
.

Theorem 8. Suppose M1, ...Mn are a sample from a max-stable vector as above with mean

vector 0 and correlation matrix Σ, where the correlation terms Σ(i, j) are bounded bounded such

that |Σ(i, j)| < (1 − ε) for some ε > 0. Let δmin be the minimal eigenvalue of Σ. Let ΣEC2−NS
C

be the estimator defined in (3.3.1). Let Nd be the number of nonzero elements in Σ. Then with

λ = c3(p
2/(1+γ)

n1/2 )1−q, and τ ≤ δmin, we have that:

∥∥ΣEC2−NS
C − Σ

∥∥
F

= OP

(
c0(p)

√
Nd(

p2/(1+γ)

n1/2
)1−q

)
.

The proofs of Theorems 7 and 8 are identical to the proofs of Theorems 4 and 5.

3.5. Numerical Examples

Before we demonstrate any theoretical results for our estimators, we conduct a series of nu-

merical experiments (using simulation) to show the performance of our algorithms compared to

STO operators and naive correlation matrices. Note that the estimators can be calculated using a
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version of the Iterative Soft-Thresholding and Projection (ISP) algorithm designed by [44]. See the

appendix for details. We compared the following 5 estimators:

• EC2 with Max-Stable Correlations in Normal Space (EC2-NS): Σ̂EC2−NS(SM , λ, τ)

• EC2 on Transformed Correlation in Max-Stable Space (EC2-SN): Σ̂EC2−MS(SM , λ, τ)

• EC2 with Separate Shrinkage and Normal Eigenvalue Constraint (EC2-SN):

Σ̂EC2−SN (SM , λ1, λ2, τ)

• STO for Max-Stable Correlations: Σ̂STO−MS(SM , λ)

• The naive correlation estimator: C−1
M (SM )

We used the following 3 models for the underlying correlation matrix:

• Toeplitz Matrix: Σ(j, k) = 0.75|j−k|

• Block Matrix: We split the matrix evenly into 10 groups, where Σ(j, k) = 0.8 if they belong

to the same group, and 0 otherwise.

• Banded Matrix: We split the matrix evenly into 10 groups, where the correlation was

Σ(j, k) = max

{
1− |j − k|

d/10
, 0

}
.

Using these covariance models, for d = 50, 100, 200, 400 we generate a sample of size 110 from the

corresponding max-stable vector using the exact sampling algorithm [45]. We re-divide this sample

K = 25 times into a training set of size 82 and a test set of 28. For each soft-thresholding operator

(corresponding to an EC2 estimator), we choose the optimal value of λ:

λ̂ = argmin
K∑
i=1

∥∥Σ̂k
λ − Sk

∥∥2

F

where Σ̂k
λ is the STO estimator from the k − th training set, using tuning parameter λ, and Sk is

the correlation matrix from the k − th training set. For each of the EC2 estimators, we use the

estimate of λ for the corresponding STO operator, and select τ as the following:

τ̂ = argmin
K∑
i=1

∥∥Σ̂k
τ − Sk

∥∥2

F

where Σ̂k
τ is the ΣEC2 estimator from the kth training set using λ̂ and τ .
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d EC2-NS EC2-MS EC2-SN STO Naive

‖·‖F 50 7.43 7.84 5.06 8.38 12.8

100 10.27 12.17 7.88 13.90 27.16

200 18.32 19.15 12.86 21.85 55.71

400 25.66 27.83 19.11 35.94 114.32

‖·‖2 50 4.66 4.91 2.81 5.61 10.09

100 5.26 7.46 4.00 8.85 21.49

200 5.73 6.11 3.52 9.39 44.06

400 5.86 7.21 3.66 15.69 90.88

Table 3.1. Results with Toeplitz Matrix

d EC2-NS EC2-MS EC2-SN STO Naive

‖·‖F 50 8.19 8.18 4.24 8.71 13.39

100 13.86 16.48 7.81 19.09 26.59

200 32.95 41.39 20.64 44.56 52.84

400 49.35 57.19 36.76 68.18 106.8

‖·‖2 50 3.51 3.35 1.65 4.11 10.48

100 9.09 12.41 4.35 14.59 20.88

200 21.93 32.28 8.79 34.77 41.28

400 30.66 39.43 19.48 49.97 83.45

Table 3.2. Results with Banded Matrix

Using the tuning parameters we have selected, we now generate 1000 data sets from each of

the underlying covariance models with sample size 110, in d = 50, 100, 200, 400 and calculate the

corresponding estimators. We show the results in Tables 3.1, 3.2 and 3.3.
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d EC2-NS EC2-MS EC2-SN STO Naive

‖·‖F 50 5.31 5.52 1.85 6.96 13.63

100 17.99 21.09 5.3 25.59 27.12

200 24.07 21.29 9.98 28.7 52.26

400 44.26 48.85 21.82 66.15 108.59

‖·‖2 50 2.9 2.41 0.93 4.52 10.66

100 12.01 16.43 2.33 20.09 21.28

200 11.19 11.37 4.16 15.97 42.53

400 27.49 29.09 10.95 48.46 84.79

Table 3.3. Results with Block Matrix

67



CHAPTER 4

Robust Risk Analysis

4.1. Introduction

The problem of properly evaluating the risk for a portfolio of mines is poorly understood. Market

risks have been well understood in this area for many years - mines can be priced with real options

models in the spirit of [10], and the approximate value of the mine can be evaluated given the struc-

ture of the mine (reserves, capacity, cost of extraction, local tax rates), and certain market inputs

(price of the underlying mineral, volatility of the underlying, interest rates). In an idealized world,

this would encapsulate all the risks of a mining portfolio, so standard techniques for calculating

portfolio risks could be used.

A mining operation, though, contains many operational risks that have a very asymmetric payoff

profile, and are infrequent and location-dependent. Consider the case of a tailings dam failure: the

mechanism by which is happens is poorly understood, as failures happen much more frequently than

one would expect, and we have sparse data from which to estimate such an occurrence. A tailings

dam is typically built to withstand a certain rainfall event (say, one in fifty or one in hundred years) -

however, estimating that threshold correctly is challenging and non-robust to model misspecification,

as seen in Chapter 2. The risk of a tailings dam failure, though, is catastrophic - costs of repairs

may exceed the value of the mine itself, and there is a great likelihood that the operator of the mine

will lose even more money through lawsuits and penalties from local regulators. In addition to the

risk of extreme events, the holder of a portfolio of mines must be concerned with the correlation

between extreme events in a portfolio; one may be able to withstand certain losses as an individual

event, but multiple simultaneous mine failures may require too much capital to remain solvent.

A more general concern (beyond risks inherent to just mines) is that our methods of estimating

extremal risk metrics may not be adequate. We wish to use a technique that is robust to the model

being used to price and calculate risk, and also to consider various stress scenarios.
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In order to overcome these issues, we consider three recent advances that can be used together

to overcome these issues:

(1) The Robust Real Options model developed in Chapter 2 builds on the tools of real options

methodology to incorporate an estimation-robust disaster risk for a mine site using the

techniques for distributionally robust extreme values analysis developed by [7]. This enables

the user to better calculate the value of a mine given precipitation data from the mine site,

and come up with a worst case arrival rate for the level of tolerance to which the mine was

built.

(2) Multivariate Max Stable covariance estimation in Chapter 3 uses developments in the

theory of high-dimensional covariance estimation and simulation of max-stable vectors to

estimate a sparse covariance matrix for the generative Gaussian process of the maxima of

rainfall at a variety of sites.

(3) The Sample-Out-of-Sample methodology [5] is a method of performing data-driven stress

testing, in which one measures the impact of a plausible set of out-of-sample scenarios on a

performance measure of interest. This way, we can incorporate simulated data using items

(1) and (2) into a set of scenarios that include historical data, and calculate a variety of

robust risk metrics

In this chapter, we will use these techniques on a portfolio of copper mines, first by valuing them

with the robust real options model, to come up with the initial portfolio value, and calculating a set

of Greeks (partial derivatives with respect to the underlying). A variety of stressed scenarios using

the estimated covariance matrix from item (2) and the robust failure levels from item (1) will then

be generated, along with market prices from the underlying asset. We can then combine this with

the historical data to have two data sets that are used as the inputs to item (3), where we can then

calculate a set of model robust stress tests and risk metrics.
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4.2. Sample-Out-of-Sample Methodology

Sample-out-of-Sample (SOS) is a novel method of calculating robust non-parametric bounds on

risk metrics that incorporate the effect of out-of-sample stress scenarios. Suppose one wishes to

calculate a quantity of interest, E[L(X)] where X is the risk factor of interest, and L(X) is the

corresponding loss. We let X1, ...Xn ∈ Rl be a historical i.i.d. sample of X. Typically, one would

use these samples to estimate E[L(X)]. However, we also wish to incorporate a variety of plausible

stress scenarios Y1, ..., Yn, which may be drawn from a different distribution than the Xi’s. If we let

Zk = Xk and Zn+k = Yk for k = 1, ..., n then the corresponding SOS profile function will be:

RWn (θ) = min
∑
i,k

‖Xi − Zk‖22 π(i, k)

s.t.
∑
k

π(i, k) =
1

n
∀i, π(i, k) ≥ 0 ∀i, k,

∑
i=i,k

L(Zk)π(i, k) = θ.

For a number of cases, the asymptotic distribution of Rn(θ) is known. For example, in the one-

dimensional case:

nRn(θ)→ vR

where R is a chi-squared distribution with one degree of freedom , and v has a semi-closed form

solution. Then, we can consider an confidence interval of the form {θ : Rn(θ) ≤ δ
n} where

δ
v is the

corresponding quantile of the χ2 distribution.

We now formalize these definitions, and introduce the concepts of SOS for estimating equations,

and implicit and explicit SOS, and summarize the asymptotic results.

4.2.1. Sample of Out Sample for Means.

Definition 9. The SOS function, RWn (·), to estimate θ∗ = E(X) is defined as

RWn (θ∗) = inf{
∫ ∫

‖x− z‖22 π(dx, dz) :

s.t. π ∈ P(Xn ×Z(n+m)), πX = µn, πZ = vn,

∫
zvn(dz) = θ∗}

where Xn = {x1, ...xn}, Ym = {y1, ..., ym}, Zn+m = Xn ∪ Ym, µn = 1
n

∑
δXi(dx), vn = 1

n

∑
δZi(dz)

. For any closed set C, we denote by P(C) the set of probability measures supported on C. For any
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π ∈ P(Xn × Zn+m), we write πX ∈ P(Xn) to denote the marginal distribution with respect to the

first random variable X, and πZ is defined similarly.

Theorem 10. (SOS Profile Function Asymptotics for Means) Assume E ‖X1‖22 +E ‖Y1‖22 <∞,

and that X and Y have positive densities fX(·) and fY (·). Then

nRWn (θ∗)⇒ σ2χ2
1

where σ2 = V ar(X).

4.2.2. SOS Function for Estimating Equations. Suppose h : Rd×R→ R and that θ∗ ∈ Rd

satisfies:

E[h(θ∗, X)] = 0

and

E ‖h(θ∗, X)‖22 <∞.

Definition 11. (Implicit SOS Profile Function for Estimating Equations). Let

RWn (θ∗) = inf{
∫ ∫

‖h(θ∗, x)− h(θ∗, z)‖22 π(dx, dz) :

s.t. π ∈ P(X hn(θ∗)× Zhn(θ∗)), πX = µn,

∫
h(θ∗, z)πZ(dz) = 0}

where X hn (θ∗) = {h(θ∗, Xi) : Xi ∈ Xn} and Zhn(θ∗) = {h(θ∗, Zi) : Zi ∈ Zn+m}.

The implicit formulation is useful as frequently the values given by the estimating equation are

more informative than the underlying values of x, so the information is used in a more efficient

manner.

Theorem 12. (Implicit SOS Profile Function Asymptotics) Suppose gX(·) is the density for

h(θ∗, Xi) and gY (·) is the density of h(θ∗, Yi) ∈ Rq. Then, the Wasserstein profile function satisfies:

nRWn (θ∗)⇒ V ar(h(θ∗, X1)χ2
1

The next SOS function type we consider is denoted the Explicit SOS because we use the explicit

distances from the sample data.
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Definition 13. (Explicit SOS Profile Function for Estimating Equations)

RWn (θ∗) = inf{
∫ ∫

‖x− z‖22 π(dx, dz) :

s.t. π ∈ P(X n × Zn), πX = µn,

∫
h(θ∗, z)πZ(dz) = 0}.

Theorem 14. Suppose that the derivative of h(θ∗, x) with respect to x, Dxh(θ∗, ·) is a continuous

function of x and the second derivative with respect to x is bounded for all x. Let Vi = Dxh(θ∗, Xi) ·

Dxh(θ∗, Xi)
T and assume that Υ = E(Vi) is strictly positive define. Then

nRn ⇒ Z̃TΥ−1Z̃ (4.2.1)

where Z̃ ∼ N(0, V ar(h(θ∗, X)))

4.3. Application of the Techniques

Given a portfolio of mines, we can use the following procedure to calculate robust risk metrics,

namely a 1-year (1−α)% VaR. We used a dataset of d = 23 copper mines throughout the Americas

in our example.

(1) Given a set of mine locations, calibrate the GEV processes for the individual time series of

annual maxima. For this experiment, we use the NOAAA ERA20C dataset, which provides

averaged data on a grid. We use the nearest grid-point to the mine’s location.

(2) For the level of tolerance to which the mines were built, find the robust worst-case proba-

bility pi for each individual time series. We assumed that every mine in our dataset was

built to a 1-in-100 year specification; however, users can obviously enter a different quantile

based on their research and beliefs.

(3) Price the mines using the robust real options model using the failure probabilities calculated

in step 2. In doing this computation, also calculate the Greeks of interest - namely, Delta
∂C
∂S and Gamma ∂2C

∂S2 , however, one can also calculate additional Greeks such as Vega ∂C
∂σ or
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Rho ∂C
∂r if one is interested in investigating interesting rate or volatility risk as well. Using

the current mineral price, we can calculate the value of the portfolio V0.

(4) Using the methods of EC2-SN estimator from Chapter 3, estimate a sparse correlation

matrix Σ̂ for the underlying max-stable vector for the portfolio of mines. It is recommended

that one estimate the tuning parameters λ1 and λ2 by cross-validation using the analogous

soft-thresholding algorithm, and then estimating τ using cross-validation.

(5) For the sample-out-of-sample procedure, generate the Xi ∈ Rd+1 where the first column is

a set of copper prices generated from (or from a calibrated model in which we have a high

degree of confidence), and the remaining d columns are indicators for mine failure - for the

Xi we assume they are all zeros. Therefore, L(X) can be calculated simply by using the

change in copper prices and the Taylor expansion for each mine to re-value the portfolio.

(6) For the sample-out-of-sample procedure, generate the Yi ∈ Rd+1 as follows: For the copper

prices, either use the same historical model or use a stressed model. Mine failure are

simulated by generating values from a max-stable vector with the covariance matrix Σ̂,

and recording a failure for a particular mine site whenever the corresponding element in

the random vector is greater than the (1− pi) quantile of the marginal. L(Y ) is calculated

as follows: If a failure for a particular mine does not occur, we use the Delta-Gamma

expansion as we did for X, and in the event of a mine failure, the value of the mine instead

to 0. The new value of the portfolio is then calculated.

(7) With vectors L(X) and L(Y ), we use the estimating equation for (1− α)% VaR

h(θ;L(X)) = 1{L(X) > θ} − α

which will have the limiting distribution (4.2.1). We can then calculate an appropriate

SOS confidence interval.

(8) We can repeat steps 5-7 multiple times and average the results.
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4.4. Results

For the purpose of strictly isolating the joint disaster risk in a portfolio, we do not consider the

market/delta risk in the following examples, that is, we assume that the change in market price

used in Section4.3 is zero for the underlying. Losses for a disaster were assumed to be 100% of

the value of the mine, as priced with the robust real options model. We used the following sets of

simulated data as inputs to the SOS framework:

(1) Disaster arrivals with the correlation structure estimated from the real data, with a 1%

quantile threshold

(2) Disaster arrivals with the correlation structure as above, with the robust worst-case quantile

estimated from the rainfall data

(3) Disaster arrivals with the 1% threshold combined as the base data, and disaster arrivals

with the robust worst-case thresholds as the stressed data

For each of these data types, we calculated two 95% SOS-based confidence intervals for the following

quantities of interest:

(1) Mean losses for a 1 year portfolio horizon

(2) 90% CVAR (Expected Shortfall)

We used an explicit formulation of SOS, where the underlying data was assumed to be 1-dimensional,

i.e.:

Xi =
n∑
j=1

Vj1{D(j)
i =1}

where Vj is the value of the jth mine at time 0, and D(j)
i is an indicator for the event that the j− th

mine has a disaster in the 1 year time period. We consider four settings, n = 20, 50, 100, and 200.

For each setting, we repeated the experiment 1000 times, and noted the mean of upper and lower

bounds, and the mean and standard deviation of the interval width for each method. The results

are summarized in Table 4.1 for the mean losses and Table 4.2 for the expected shortfall.
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n Data Set Mean Lower Bound Mean Upper Bound Mean Interval Length SD of Length

20 1% quantile 18.2 67.8 49.6 12.85

Robust Quantile 98.5 287.1 188.6 15.2

Stress Test 15.8 70.7 54.9 9.3

50 1% quantile 21.8 69.2 47.4 3.6

Robust Quantile 117.0 247.5 130.5 3.8

Stress Test 21.4 70.2 48.8 3.2

100 1% quantile 12.2 32.3 20.1 2.3

Robust Quantile 133.9 219.6 86.3 1.7

Stress Test 12.0 32.9 20.9 1.5

200 1% quantile 17.7 38.9 21.1 0.7

Robust Quantile 142.0 205.0 63.0 0.85

Stress Test 17.5 39.1 21.5 0.6
Table 4.1. Mean Losses

n Data Set Mean Lower Bound Mean Upper Bound Mean Interval Length SD of Length

20 1% quantile 277.6 734.1 456.5 280.1

Robust Quantile 469.7 1414.4 944.7 444.6

Stress Test 191.2 790.3 599.1 266.6

50 1% quantile 154.9 652.4 497.5 111.1

Robust Quantile 551.7 1274.5 722.8 174.2

Stress Test 148.9 682.4 533.4 117.8

100 1% quantile 74.2 571.9 497.7 50.2

Robust Quantile 604.2 1078.4 474.2 73.5

Stress Test 61.9 583.7 521.8 43.3

200 1% quantile 123.9 374.1 250.2 28.2

Robust Quantile 608.4 1008.3 399.9 40.8

Stress Test 118.1 381.4 263.2 30.7

Table 4.2. 90% Conditional Value at Risk
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CHAPTER 5

Robust Performance Analysis with Independence Constraints

5.1. Introduction

So far, we have demonstrated several applications of robust performance analysis and related

ideas to a number of problems in the mining sector. In this chapter, we will investigate several

results in the field of robust performance analysis that are of independent theoretical interest and

can be applied to a wide variety of other problems.

Robust performance analysis is concerned with the problem of evaluating the worst case perfor-

mance measure of interest (typically described as an expectation) among all plausible probability

models, such as those within certain tolerance of a baseline model which is believed to be reflec-

tive of reality. Taken literally, this problem formulation can be challenging because it gives rise to

an infinite dimensional optimization problem (note that we mentioned “all models” within certain

tolerance). When the tolerance region is described in terms of Kullback-Leibler divergence (and

other related notions), this apparently daunting optimization problem is often tractable, and this

tractability feature has been exploited in a range of literature in recent years, for example in control

theory ([40, 50, 52]), distributionally robust optimization ([1]), finance ([30]), economics ([33]) and

queueing ([41]).

Tolerance regions based on the Kullback-Leibler divergence, however, fail to incorporate infor-

mation that is often quite natural to assume in common stochastic settings, and that should be

added in terms of constraints in the underlying robust performance analysis formulation. One such

natural and important constraint is the i.i.d. property, often arising in models involving random walk

input. Failing to inform the i.i.d. property even in simple situations involving random walk models

can have important consequences in terms of the accurate assessment of worst case performance

measures of interest.

Unfortunately, however, a robust formulation in which the i.i.d. property is added as an extra

constraint on top of the Kullback-Leibler imposed tolerance gives rise to an optimization problem
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which is no longer easy to handle. However, in the context of performance analysis associated a class

of large deviations events, such robust formulation gives rise to a problem for which asymptotically

optimal solutions can be constructed; we illustrate this idea in the setting of i.i.d. random walks.

The rest of the chapter is organized as follows. In Section 2 we provide a precise mathematical

formulation of the robust performance analysis problem with i.i.d. constraints and explain why the

problem is very challenging. In Section 3 we provide a strategy that allows to solve this challenging

problem asymptotically in a large deviations regime. In Section 4, we provide numerical examples

which illustrate the performance of our proposed solution and the impact of adding i.i.d. constraints

in the robust formulation. In Section 5, we provide an alternate algorithm that does not require

the large deviations setting, has promising numerical results, and unknown theoretical properties.

5.2. Problem Formulation

Let {Xk : k ≥ 0} be a sequence of zero mean i.i.d. random variables. Define S0 = 0 and put

Sn = X1 + · · ·+Xn. Let us use F (·) to denote the CDF (Cumulative Distribution Function) of Xi,

that is, P (Xi ≤ x) = F (x) and we use PF (·) to denote the product measure generated by F (·). We

use PnF (·) to denote the projection of PF (·) onto its n first coordinates. Simply put, PnF describes

the joint distribution of the random variables (X1, . . . , Xn). The expectation operator associated to

PF (·) and PnF (·) is denoted by EF (·) and EnF (·), respectively. We define ψF (θ) = logE1
F exp (θX1)

and assume that ψF (θ) <∞ for θ in a neighborhood of the origin.

Now, define An = {Sn/n ∈ A} for a closed set A which does not contain the mean of Xk. We are

concerned with the problem of estimating PF (An). Observe that PF (An) → 0 as n → ∞ because

of the law of large numbers. Moreover, because ψF (·) is finite in a neighborhood of the origin we

have that PF (An) ≤ exp (−δn) for some δ > 0 for all n sufficiently large.

In contrast to standard rare event estimation problems, however, here we assume that F (·) is

unknown. Nevertheless, based on some evidence (for example based on data or expert knowledge)

let us assume that we have obtained a CDF G (·), which approximates F (·) in a suitable sense,

for example in the Kullback-Leibler sense which we shall review momentarily. Let us write PG (·)

to denote the product measure associated to G (·) and we use EG (·) for the expectation operator
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corresponding to PG (·). Similarly as before, PnG (·) is the projection of PG (·) onto its n first

coordinates and we use EnG (·) to denote the expectation operator associated to PnG (·).

We assume that the likelihood ratio dPnF /dP
n
G is well defined and therefore the Kullback-Leibler

divergence of PnF with respect to PnG is defined via

R (PnF ||PnG) = EnF log

(
dPnF
dPnG

)
= nE1

F log

(
dP 1

F

dP 1
G

(X1)

)
= n

∫
log

(
dF

dG
(x)

)
dF (x) .

If dPnF /dP
n
G fails to exist (i.e. PnF is not absolutely continuous with respect to PnG), then the Kullback-

Leibler divergence is defined as infinity. It is elementary to verify that R(· ||PnG) is convex (actually

R (·||·) is convex in both of its arguments; ([24]). The associated robust performance analysis

problem with Kullback-Leibler constraint consists in solving

max
Qn
{Qn (An) : R (Qn||PnG) ≤ ηn}, (5.2.1)

where ηn should be chosen to satisfy

ηn ≈ n
∫

log

(
dF

dG
(x)

)
dF (x) .

One might select ηn by estimating
∫

log (dF/dG (x)) dF (x) using available data.

The optimization problem (5.2.1) is a concave mathematical program; the objective function to

maximize is linear (in particular concave) in the variableQn and, as mentioned earlier, the constraint

is convex. Moreover, as we shall see in the body of the section (see Equations (5.2.5) and (5.2.6)),

the optimal solution to (5.2.1), Qn∗ (·), can be characterized as a suitable mixture between PnG (·|An)

and PnG (·|Acn). As the next result shows, it turns out that Qn∗ (An) might differ substantially from

PnF (An) even if F is close to G in the Kullback-Leibler sense, that is, even in cases in which

ηn = o (n) as n→∞. In more detail, typically we will have PnF (An) = exp
(
−nĪF (A) + o (n)

)
, for

some positive constant ĪF (A), whereas the next result indicates that typically Qn∗ (An) ≥ δηn/n for

some δ > 0 and large enough n. So, for example, if one builds an approximation G to F from data,

one would need an exponentially large sample size (in n) in order to obtain an accurate estimate of

the probability of interest using only the relative entropy constraint without recognizing that the

data might have come from an i.i.d. model.
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Theorem 15. Suppose that ηn = o(n) and that ηn > δ > 0 for some δ > 0 uniformly over n.

Assume also that PnG (An) ∈ (exp (−n/δ′) , exp (−δ′n)) for some δ′ > 0 and all n sufficiently large.

Then the optimal value of (5.2.1), Qn∗ (An), satisfies

Qn∗ (An) =
ηn

− logPnG (An)
(1 + o(1))

as n→∞.

One of the main reasons for such a disparity, as we shall establish in the next section, is that

the feasible region (i.e. {Qn : R (Qn||PnG) ≤ ηn}) fails to recognize that we are interested only in

models for which the i.i.d. property of the Xi’s is preserved. So, introducing the i.i.d. constraint

transforms problem (5.2.1) into the alternative form

max
H

{
PnH (An)

=

∫
· · ·
∫
I

(
x1 + · · ·+ xn

n
∈ A

)
dH (x1) · · · dH (xn) : n

∫
log

(
dH

dG
(x)

)
dH (x) ≤ ηn

}
.

(5.2.2)

Observe that the previous problem is not a concave program because the objective function to

maximize is no longer concave. Unfortunately, in general (5.2.2) is very challenging to solve. In the

next section we explain how to use large deviations theory to solve problem (5.2.2) in an asymptotic

sense. We finish this section with a proof of our first theorem.

Proof. To solve (5.2.1), we rewrite it in terms of the likelihood ratio between Qn and Gn,

namely L = dQn/dPnG, as

max EnG [L;An]

subject to EnG[L logL] ≤ ηn,
(5.2.3)

where the maximization is over L ∈ L = {L ≥ 0 : EnGL = 1} and consider the Lagrangian relaxation

max
L∈L

EnG[L;An]− α(EnG[L logL]− ηn). (5.2.4)

Our goal is to find α∗ ≥ 0 such that there is an L∗ that solves (5.2.1) and moreover thatEnG[L∗ logL∗] =

ηn. Then this L∗ will be optimal for (5.2.1) (c.f. [47], Theorem 1, p. 220).
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First, note that when α = 0, the optimal solution to (5.2.4) is clearly L∗ = I(An)/PnG(An),

where I (An) denotes the indicator function of the set An, which yields the optimal value 1. But

then EnG[L∗ logL∗] = − logPnG(An) = Ω(n) by our assumption in Theorem 15, and since we assume

ηn = o(n) we cannot have EnG[L∗ logL∗] = ηn as n increases. Therefore the case α∗ = 0 is

discriminated.

Now, given any fixed α > 0, it can be verified by a convexity argument that the solution to the

maximization (5.2.1) is given by

L∗ ∝ eI(An)/α = e1/αI(An); (5.2.5)

see [33]. Now we write αn for α to highlight the role of n, and introduce βn = 1/αn for convenience.

We also write pn = PnG (An) and put qn = PnG
(
Ān
)

= 1− pn. Then (5.2.5) can be written as

L∗ =


eβn

pneβn+qn
on An

1
pneβn+qn

on Acn
. (5.2.6)

We now proceed to find α∗n > 0, or β∗n = 1/α∗n, such that

EnG[L∗ logL∗] = ηn. (5.2.7)

Using the form of (5.2.6), (5.2.7) becomes

βn
pne

βn

pneβn + qn
− log(pne

βn + qn) = ηn. (5.2.8)

Since ηn > δ > 0 and pn → 0 as n→∞, we must have that all βn satisfying (5.2.8) must also satisfy

βn →∞ as n→∞. Otherwise the left hand side converges to zero on some subsequence while the

right hand side stays positively bounded away from zero. Now, we claim that lim sup pne
βn = 0.

Let us proceed assuming this claim for the moment and come back to this issue at the end of our

proof. Then, by a Taylor series expansion applied to the left hand side of (5.2.8), we have that

βnpne
βn(1 + o(1)) = ηn, (5.2.9)

which gives

log βn + log pn + βn + o(1) = log ηn.
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Heuristically, we must have

βn = log ηn − log pn − log βn + o(1) = (log ηn − log pn)(1 + o(1)). (5.2.10)

To verify (5.2.10) rigorously, note that when we choose βn = log (ηn/pn), the left hand side of (5.2.9)

becomes ηn(log(ηn/pn))(1 + o(1)) which is much more larger than ηn for n large enough. On the

other hand, setting βn = 0 gives the left hand side o(1). Therefore, by continuity there must be a

solution to (5.2.9) in the range [0, log(ηn/pn)]. Consequently, we have that

βn = log ηn − log pn − log βn + o(1) = log ηn − log pn + rn, (5.2.11)

where the remainder term rn satisfies |rn| ≤ log(log (ηn/pn)) + o(1), or equivalently we obtain that

rn = o(log (ηn/pn)), and hence (5.2.10).

Iterating the first equality in (5.2.10) using (5.2.11), we get further that

βn = log ηn − log pn − log(log ηn − log pn + rn) + o(1) = log ηn − log pn − log(log ηn − log pn) + o(1).

Finally, the optimal value is

EnG[L;An] =
pne

βn

pneβn + qn
∼ pneβn =

ηn
log ηn − log pn

(1 + o(1)) ∼ ηn
− log pn

.

Now we must verify that indeed lim sup pne
βn = 0. Assuming that lim sup pne

βn > 0, then βnk ≥ δnk

along a subsequence nk → ∞ for δ > 0. But then we must have from (5.2.8) that ηnk ≥ δ′nk for

some δ′ > 0, contradicting our assumption that ηn = o (n). We therefore conclude the statement of

our theorem. �

5.3. Our Main Result

5.3.1. A Large Deviations Rate Characterization. In order to prove our main result we

shall impose additional technical conditions. We assume that ψG (·) is steep in the sense that for

all a ∈ (−∞,∞) there is θa such that ψ′G (θa) = a. Under this assumption we have that

PnG (An) = exp
(
−nĪG (A) + o (n)

)
,
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where

ĪG (A) = inf
x∈A

IG(x) = inf
x∈A

sup
θ

(θx− ψG (θ)) .

Similarly, for any CDF H, we define ψH (θ) = logE1
H exp (θX) and IH (x) = supθ (θx− ψH (θ)).

Similarly as for the definition of ĪG (A), we write ĪH (A) = infx∈A IH (x). Now we are ready to state

our main result.

Theorem 16. Let int (A) denote the interior of the closed set A. Suppose that ĪH(A) =

ĪH(int (A)) ∈ (0,∞) for any H ∈ P for some feasible set P. We have

lim
n→∞

1

n
log max

H∈P,Xi
i.i.d.∼ H

PnH(A) = −min
H∈P

ĪH(A).

Proof. The proof follows from a large deviations argument. First,

lim inf
n→∞

1

n
log max

H∈P,Xi
i.i.d.∼ H

PnH(An) = lim inf
n→∞

max
H∈P,Xi

i.i.d.∼ H

1

n
logPnH(An)

≥ max
H∈P,Xi

i.i.d.∼ H

lim inf
n→∞

1

n
logPnH(An)

≥ −min
H∈P

ĪH(int (A)) = −min
H∈P

ĪH(A).

Next, since A is closed, using Chebycheff inequality (as in the proof of Cramer’s theorem; ,see p. 27,

Remark (c) in [21]) gives

PH(An) ≤ 2 exp
(
−nĪH(A)

)
and hence

lim sup
n→∞

1

n
log max

H∈P,Xi
i.i.d.∼ H

PnH(An) ≤ −min
H∈P

ĪH(A).

Combining the upper and lower bounds we get our conclusion. �

The significance of the previous result is that the optimization problem that must be solved can

now be cast as a concave program and thus it is more tractable. In order to have a concrete class

of examples, let us focus on the case in which A = [a,∞). Really the key property that holds using

this specific selection is that we can identify a specific element a ∈ A such that IH (a) = ĪH (A).

We consider the general problem of finding the minimum rate function over a class of distributions,

namely
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inf
H∈P

IH(a) = inf
H∈P

sup
θ
{θa− ψH(θ)}. (5.3.1)

Lemma 17. If P is a convex set, then the optimization program (5.3.1) is convex.

Proof. The inner objective function in (5.3.1) is concave as a function of θ, since ψH(·) is

convex. For the outer objective function, note that ψH(θ) is concave in H, and so θa − ψH(θ) is

convex in H. As the maximum over a set of convex functions (indexed by θ), the outer objective

function supθ{θa − ψH(θ)} is also convex as a function of H. Therefore both the inner and outer

optimizations in (5.3.1) are convex programs. �

5.3.2. Numerical Procedure. For our numerical procedure, in order to avoid the issue of

optimization over infinite-dimensional variables, we concentrate on the case of discrete H. Also we

focus on A = [a,∞). For convenience, we write p = (p(1), . . . , p(m)) as the weights over support

points {x(1), . . . , x(m)}. Moreover, we write

Z(p) = max
θ

{
θa− log

m∑
i=1

p(i)eθx(i)

}
(5.3.2)

as the outer objective function in (5.3.1). We concentrate on the case when a lies between

mini=1,...,m x(i) and maxi=1,...,m x(i); if a > maxi=1,...,m x(i), then the worst-case probability of inter-

est max
PH∈P,Xi

i.i.d.∼ PH
PnH(An) is trivially 0, whereas if a < mini=1,...,m x(i) then one can replace a by

mini=1,...,m x(i) without changing the probability of interest. In the case

a ∈ [mini=1,...,m x(i),maxi=1,...,m x(i)], the optimal solution for θ in (5.3.2) can be solved simply

by finding the root of ∑m
i=1 p(i)x(i)eθx(i)∑m
i=1 p(i)e

θx(i)
= a.

We now focus on minp∈P Z(p). Suppose that P is a feasible region dictated by Kullback-Leibler

divergence constraint, i.e. P = {p ≥ 0 :
∑m

i=1 p(i) log(p(i)/p0(i)) ≤ η,
∑m

i=1 p(i = 1} for some

baseline distribution p0 = (p0(1), . . . , p0(m)). A particularly convenient procedure to approximate

the optimal solution is to use the conditional gradient (or Frank-Wolfe) method [27]. This lies on

the stepwise optimization, given the current solution pk = (pk(1), . . . , pk(m)) at step k,

min
p∈P
∇Z(pk)(p− pk). (5.3.3)
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This subroutine can be easily solved. In fact, we have

∇Z(pk) =

− d

dp(i)

log
m∑
j=1

p(j)eθ
kx(j)

∣∣∣∣∣∣
p(i)=pk(i)


i

=

(
− eθ

kx(i)∑m
j=1 p(j)e

θkx(j)

)
i

by simple arithmetic or by the use of the envelope theorem, where θk is the solution to∑m
i=1 p

k(i)x(i)eθx(i)∑m
i=1 p

k(i)eθx(i)
= a.

For convenience, we let

ξ(i)(pk) = − eθ
kx(i)∑m

j=1 p
k
j e
θkx(i)

be the i-th coordinate of ∇Z(pk). The solution to (5.3.3) is given by qk+1 = (qk+1(1), . . . , qk+1(m)),

where

qk+1(i) =
p0(i)eβξ(i)(p

k)∑m
j=1 p

0(j)eβξ(j)(pk)

and β < 0 satisfies the equation∑m
i=1 βp

0(i)ξ(i)(pk)eβξ(i)(p
k)∑m

j=1 p
0(j)eβξ(j)(pk)

− log
m∑
j=1

p0(j)eβξ(j)(p
k) = η.

If there is no negative root to this equation, then qk+1 is plainly a degenerate mass on

argmin{∇Z(pk)}.

Therefore, the iterative procedure is the following:

Iterative Procedure: Start from the baseline distribution p0 (or any other distribution). At each

iteration k, given pk, do the following:

(1) Compute the root θ that solves∑m
i=1 p

k(i)x(i)eθx(i)∑m
i=1 p

k(i)eθx(i)
= a.

(2) Compute

ξ(i) = − eθx(i)∑m
j=1 p

k(j)eθx(j)
for i = 1, . . . ,m.
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(3) Compute, if any, the negative root of∑m
i=1 βp

0(i)ξie
βξ(i)∑m

j=1 p
0(j)eβξ(j)

− log
m∑
j=1

p0(j)eβξ(j) = η.

(4) If there is a negative root β, then

qk+1(i) =
p0(i)eβξ(i)∑m
j=1 p

0(j)eβξ(j)
for i = 1, . . . ,m.

Otherwise qk+1(i) = 1 if i = argmin{ξ(i)}, and 0 for all other i’s.

(5) Update pk+1 = (1− εk+1)pk + εk+1qk+1 for some step size εk+1.

There are several choices for the step size εk+1 in the above procedure. It can be a constant, or

one can use the so-called limited minimization rule or the Armijo rule (see [3], p. 217). The latter

two choices guarantee convergence to the optimal solution, in the sense that every limit point of

the sequence pk+1, as computed by the procedure above with the chosen rule, will be optimal for

minimizing Z(p) ([3], Proposition 2.2.1 and Section 2.2.2).

5.4. Numerical Experiments

We will apply our algorithm to the case of two standard discrete distributions with finite support,

namely the binomial distribution and a discrete distribution with random weights. We compare

the outcome of robust performance analysis with i.i.d. constraints and without i.i.d. constraints,

respectively.

Figure 5.1 shows the log-probabilities of the event An = {Sn/n > a} with a = 8 associated with

a binomial model with parameters m = 10, p = 0.5 as n increases. The true model is assumed to

be binomial with m = 10, p = 0.55. This gives us η = .05, which is relatively low and chosen for

illustrative purposes only. In both optimizations, we simply used step size εk = k−
2
3 which resulted

in empirical convergence of our procedure.

Figure 5.2 shows the log-probabilities of the event An = {Sn/n > a} with a = 8 associated with

a discrete distribution with on the integer support of {1, 2, . . . , 10} with the vector of weights

(.05, .12, .08, .13, .06, .04, .14, .13, .13, .12)
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Figure 5.1. Binomial

obtained by random assignment (truncated to two decimal places here). We simulated N = 300

i.i.d. replications from the model. We took the standpoint of a modeler who does not have access

to the true model, but instead uses maximum likelihood estimation (MLE) to estimate the weights

and thus obtain a baseline distribution. This gives us η ≈ .02, which is consistent for data-driven

selection. As it can be seen, in both cases the upper bound with i.i.d constraint provides a much

tighter bound to the real model than otherwise.

5.5. Preserving Independence Constraints in a Non-Asymptotic Setting

5.5.1. Motivation and Proposed Solution. Consider a set of i.i.d discrete random variables

X1, ..., XT with the state space: (x(1), ..., x(m)) and the corresponding probability vector p =

(p(x(1)), ..., p(x(m))). We will denote the baseline as p0 = ( 1
m , ...,

1
m), i.e., the uniform case. Suppose

we wish to solve the following:

max Ep[f(X(1), ..., X(T ))]

s/t
m∑
i=1

p(i) log(mp(i)) ≤ δ0
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m∑
i=1

p(i) = 1

p(i) ≥ 0,∀i (5.5.1)

As discussed in the previous sections, while the i.i.d. assumption is natural and clearly provides

a superior bound to the general worst-case bound with the Kullback-Leibler divergence constraint

(at least in the large deviations case), the optimization problem is non-convex and therefore not

amenable to the standard methods for such a problem. We present here an attempt to circumvent

this issue with a bespoke algorithm.

The motivation for this approach is as follows: if we were to assume that the underlying distribu-

tion of the components of the random variables X1, ..., XT were indeed i.i.d., that is P (X1, ..., XT ) =∏n
i=1 p(X1), then if we have two vectors (generated in this manner) Y1 = (Y1(1) = y1, ..., Y1(T−1) =

yT−1, Y1(T ) = z1), and Y2 = (Y2(1) = y1, ..., Y2(T − 1) = yT−1, Y2(T ) = z2) that differ by only one

entry (in this case, the T -th coordinate), the ratio of their probabilities of occurrence would simply
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be

P (Y1)

P (Y2)
=
p(z1)

∏T−1
i=1 p(yi)

p(z2)
∏T−1
i=1 p(yi)

=
p(z1)

p(z2)

If one were to randomly generate using p0 a vector Y with dimension, (T − 1), we can the generate

a series of vectors,

Yi = (Yi(1), ..., Yi(T − 1), x(i))

by appending the ith coordinate of x, and then the solution to the optimization:

max
w(i),i=1,...m

m∑
i=1

w(i)f(Yi(1), ..., Yi(T ))

s.t.
m∑
i=1

w(i) log(w(i)m) ≤ δ1

m∑
i=1

w(i) = 1

wi ≥ 0 ∀i

can be used to find a set of candidate solutions p̂ = (p̂(1), ..., p̂(m)) by solving the system of

equations:

p̂(i)

p̂(1)
=
w(i)

w(1)
, i = 2, ...,m

m∑
i=1

p̂(i) = 1

that will approximate the true solution to (5.5.1).

Likewise, we can generate a set of vectors Y1, ...Yn with dimension (T − 1) using p0, and then

create n×m vectors:

Yi,j = (Yj(1), ..., Yj(T − 1), x(i))
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by appending each member of x to each of the Y1, .., Yn. Now we can solve the optimization:

max
w(i,j),i=1,...m,j=1,...n

m∑
i=1

n∑
j=1

w(i, j)f(Yi,j(1), ..., Yi,j(T )) (5.5.2)

s.t.
m∑
i=1

n∑
j=1

w(i, j) log(w(i, j)mn) ≤ δ1

m∑
i=1

n∑
j=1

w(i, j) = 1

wi,j ≥ 0, ∀i, j

and we can find a candidate solution by solving the system of equations:

p̂(i)

p̂(1)
=

∑n
j=1w(i, j)∑n
j=1w(1, j)

,∀i (5.5.3)

∑
p̂(i) = 1

Ep̂[f(X1, ..., XT )] can then be estimated using Monte Carlo simulation using p̂.

There are two issues that this approach in and of itself does not address:

(1) p̂ will depend on the “paths” that have been sampled, as will the Kullback-Liebler divergence

δ = D(p̂|p0) and the expectation Ep̂[f(X1, ..., XT )].

(2) It is not immediately obvious what the relationship between δ1 and δ is (this will be further

obfuscated by the the variability in δ as a function).

We propose the following approach to remedy this:

(1) Fix a set of paths, and use a line-search method to find δ1 such that the corresponding

solution p̂ has D(p̂|p0) = δ0

(2) Repeatedly generate a new set of samples, solve the optimization (5.5.2) using a fixed value

of δ1, and record δ = D(p̂|p0) and Ep̂[f(X1, .., XT )].

(3) Fit a linear regression model for δ and Ep̂[f(X1, ..., XT )] and use the expected value of

Ep̂[f(X1, ..., XT )] given δ0 as the estimated upper bound. Other alternatives might be

K-Nearest Neighbors, etc.

See Algorithm 5 for a more complete summary of this algorithm.
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Algorithm 5 To estimate maxEP [F (X1, ..., XT )] where D1(P |P0) ≤ δ0 and X1, ..., XT are i.i.d.
Given: State vector (x1, ..., xm), divergence bound δ0

Step 1: Generate a set of vectors Y1, .., Yn of length (T − 1) using p0

Step 2: Construct a new set of n×m vectors by appending each member of x to each member of
Y1, ...Yn:

Yi,j = (Yj(1), ..., Yj(T − 1), x(i))

Step 3: Now we solve the following optimization problem:

max
w(i,j),i=1,...m,j=1,...n

m∑
i=1

n∑
j=1

w(i, j)f(Yi,j(1), ..., Yi,j(T ))

s.t.
m∑
i=1

n∑
j=1

w(i, j) log(w(i, j)mn) ≤ δ1

m∑
i=1

n∑
j=1

w(i, j) = 1

wi,j ≥ 0, ∀i, j
A reasonable initial guess for δ1 is T ∗ δ0.
The solution to this optimization will be an exponential tilting of p0, that is:

w(i, j) ∝ eθf(Yi,j(1),...,Yi,j(T ))

Step 4: We propose a candidate solution for to (5.5.1)using the solution to (5.5.2) to solve the
system of equations:

p̂(i)

p̂(1)
=

∑n
j=1w(i, j)∑n
j=1w(1, j)

, for i = 2, ...n

n∑
i=1

p̂(i) = 1

We can then simulate a series of vectors X1, ..., Xk from p̂, and estimate
maxp:D(p|p0)≤D(p̂|p0)E

p[f(X1, ..., XT )] as Z =
∑n

i=1 f(Xi(1), ..., Xi(T )).
Step 5: Calculate

δ =

m∑
i=1

p̂(i) log(p̂(i)m)

Step 6: Repeat steps 3− 5, modifying δ1 until δ ≈ δ0.
Step 7: Using the δ1 found in step 5, repeat steps 1-4 N times, recording δ(i) and Z(i).
Step 8: Fit a linear regression model Z(i) = α+ βδ(i) + εi, and estimate

max
p:D(p|p0)<δ0

Ep[f(X1, ..., XT )] = α+ βδ0

5.6. Numerical Results

In order to test the general performance of this algorithm, we fix a level of δ1 = 0.1 · T ,

generate a set of m × n paths as described above, using x = [− (m−1)
2 , ..., (m−1)

2 ] and given some
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m = 5, T = 5 m = 5, T = 10

n Algorithm 5 Local Maxima n Algorithm 5 Local Maxima

50 3.35 3.28 50 6.16 5.81

100 3.29 3.27 100 6.06 5.86

200 3.27 3.26 200 6.01 5.91

400 3.26 3.25 400 5.97 5.93

m = 9, T = 5 m = 9, T = 10

n Algorithm 5 Local Maxima n Algorithm 5 Local Maxima

50 6.90 6.4 50 12.62 10.54

100 6.60 6.28 100 12.01 10.56

200 4.67 6.28 200 11.8 10.78

400 6.37 6.28 400 11.66 11.07

Table 5.1. Comparison of Performance of Algorithm 5 versus local maxima for
Vanilla Call Option

function of the paths f , calculate the solution p̂ using (5.5.3) calculate δ =
∑m

i=1 p̂(i) log(mp̂(i)).

Then, on the same set of paths, we calculate a probability measure p̄ such that it maximizes the

conditional expectation of f(X1, ..., XT ) assuming the random variables X1, .., XT are i.i.d. and∑m
i=1 p̄(i) log(mp̄(i)) ≤ δ using a conventional optimization tool (fmincon in MATLAB). Note that

this is a non-convex problem, so we are likely to converge to a local minima. For both p̂ and p̄,

we generate 5000 paths, and record their respective (functional) expectations. This procedure is

repeated 1000 times, and we take the mean for each level of T and m. As we can see, this modified

version of Algorithm 5 consistently outperforms the regular optimization, especially as m and T

grow. For Table 5.1 we use f(X1, ..., XT ) = max(
∑T

i=1Xi, 0) (call option), and for Table 5.2 we use

f(X1, ..., XT ) = max(
∑T

i=1Xi, 0) · 1(minj=1,...,m
∑j

i=1Xi < −5) (down-and-in-call).
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m = 5, T = 5 m = 5, T = 10

n Algorithm 5 Local Maxima n Algorithm 5 Local Maxima

50 0.21 0.21 50 0.76 0.73

100 0.20 0.21 100 0.75 0.74

200 0.20 0.22 200 0.75 0.74

400 0.19 0.22 400 0.74 0.77

m = 9, T = 5 m = 9, T = 10

n Algorithm 5 Local Maxima n Algorithm 5 Local Maxima

50 0.77 0.71 50 2.36 2.00

100 0.75 0.71 100 2.34 2.04

200 0.74 0.73 200 2.32 2.08

400 0.73 0.76 400 2.32 2.14

Table 5.2. Comparison of Performance of Algorithm 5 versus local maxima for
Down-and-in Call Option
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APPENDIX A

Review of Sparse Covariance Estimation Technique

A.1. Hard Thresholding

Perhaps the simplest estimator that produces sparse covariance matrices is hard thresholding

[4], which sets elements of the sample covariance to zero if they are below some pre-determined

threshold. For sample covariance matrix S estimated from data from distribution F , the hard

thresholding estimator Σ̂HTO(λ) is defined element-wise:

Σ̂HTO(i, j)(λ) =


S(i, j), if i = j

S(i, j)1{|S(i, j)| > λ, if i 6= j

.Intuitively, when the matrix being estimated is sparse, the hard-thresholding operator has the

advantage of not estimating small elements, so noise does not accumulate in the estimation error.

If we let

Uτ (q, c0(p),M) =

Σ : σ(i, i) ≤M,

p∑
j=1

|σ(i, j)|q ≤ c0(p), for all i


then we can summarize the following convergence properties of the hard thresholding operator:

Theorem 18. (Theorem 1, [4]) Suppose F is Gaussian with covariance matrix Σ ∈ Uτ (q, c0(p),M).

Then, uniformly on Uτ (q, c0(p),M), for sufficiently large M’, if

λn = M ′
√

log p

n

and log p
n = o(1),then

∥∥Σ̂HTO(λ)− Σ
∥∥

2
= OP

(
c0(p)

(
log p

n

)
(1−q)/2

)
.
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Theorem 19. (Theorem 2, [4]) Suppose F is Gaussian with covariance matrix Σ ∈ Uτ (q, c0(p),M).

Then, uniformly on Uτ (q, c0(p),M), for sufficiently large M’, if

λn = M ′
√

log p

n

and log p
n = o(1),then

∥∥Σ̂HTO(λ)− Σ
∥∥2

F
= OP

(
c0(p)

(
log p

n

)
(1−q)/2

)
.

A.2. Soft Thresholding

The hard thresholding estimator can be modified to provide additional shrinkage to the non-

zero coefficients. The soft-thresholding estimator is a specific case of the generalized thresholding

estimator developed by [56]. We define an element-wise operator sλ on a matrix A that satisfies the

following properties

(i)|sλ(z)| ≤ z

(ii)sλ(z) = 0 for |z| ≤ λ

(iii)|sλ(z)− z| ≤ z

In the case of soft thresholding, we chose sλ(z) = sign(z)sλ(|z|−λ)+, giving us the soft thresholding

estimator Σ̂STO(λ), defined element-wise:

Σ̂STO(i, j)(λ) = sign(S(i, j))(S(i, j)− λ)+

The soft thresholding estimator has the same advantages as the hard thresholding operator, and

has the added benefit of variance reduction through shrinkage.

Theorem 20. (Theorem 1, [56]) Suppose sλ satisfies conditions (i) through (iii) and the marginals

of F satisfy

E[exp(λt2)] <∞
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for 0 < |λ| < λ0. Then, uniformly on Uτ (q, c0(p),M) for sufficiently largeM ′, if λn = M ′
√

log(p/n) =

o(1) , then

‖sλn(S)− Σ‖2 = OP

(
c0(p)

(
log p

n

)
(1−q)/2

)
.

Theorem 21. (Theorem 2, [56]) Suppose sλ satisfies conditions (i) through (iii) and the marginals

of F satisfy

E[exp(λt2)] <∞

for 0 < |λ| < λ0, and σ(i, i) ≤ M for all i. Then, for all sufficiently large M’, if λ = M ′
√

log(p)
n =

o(1), then

sλn(σ̂(i, j)) = 0

for all (i,j) such that σ(i, j) = 0 with probability tending to 1. If we additionally assume that all

nonzero elements of Σ satisfy |σ(i, j)| > τ where
√
n(τ − λ) → ∞, we also have, with probability

tending to 1,

sign(sλn(σ̂(i, j))σ(i, j)) = 1

for all (i,j) such that σ(i, j) 6= 0.

A.3. EC2 Estimator

The EC2 Estimator developed in [44] is a method of estimating correlation and covariance

matrices that is related to the soft-thresholding operator. We consider this for the case of correlation

matrices only for the purposes of this dissertation. We begin by defining the soft thresholding

operator for correlation matrices as the solution to the following optimization:

Σ̂STO(λ) = argminΣii=1 ‖Σ− S‖
2
F + λ ‖Σ‖1,off

where ‖A‖1,off =
∑

i 6=j |a(i, j)|. This has the closed form solution:

Σ̂STO(λ)(i, j) =


sign(S(i, j))(S(i, j)− λ)+, if i 6= j

1, if i = j

.
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The EC2 estimator is a modification of the STO operator that ensures the estimator is positive

definite.

Σ̂EC2(λ, τ) = argminΣii=1 ‖Σ− S‖
2
F + λ ‖Σ‖1,off

s.t. τ ≤ Λmin(Σ). (A.3.1)

There is no closed form solution to this, but it can be solved with an iterative algorithm that has

closed form solutions at every step. We will detail this algorithm in the next section.

If we let

Uτ (q, c0(p),M, δmin) =

Σ : σ(i, i) = 1,

p∑
j=1

|σ(i, j)|q ≤ c0(p) + 1, for all i, δmin ≤ Λmin(Σ)


then we can summarize the following convergence properties of the hard thresholding operator:

Theorem 22. (Theorem 4.3, [44]) Suppose the marginals of F satisfy

E[exp(λt2)] <∞

for 0 < |λ| < λ0 and Σ ∈ Uτ (0, c0(p),M, δmin). Let Nd be the number of non-zero off-diagonal ele-

ments in Σ. Then if we let λ = M ′
√

log d
n = o(1) and τ ≤ δmin, then we have

∥∥Σ̂EC2(λ, τ)− Σ
∥∥
F

= OP

(
c0(p)

√
Nd log d

n

)
.

A.4. Iterative Soft-Thresholding and Projection Algorithm

The Iterative Soft-thresholding and projection algorithm of [44] allows us to solve the optimiza-

tion (A.3.1). It can first be reparametrized by introducing an auxiliary variable Γ:

(Σ̂, Γ̂) = argminΣ(i,i)=1,τ≤Λmin(Γ)

1

2
‖S − Γ‖2F + λ ‖Σ‖1,off

s.t. Γ=Σ
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which can then be rewritten as the equivalent saddle point problem (with use of the polarization

identity):

(Σ̂, Γ̂, Û) = argminΣ(i,i)=1,τ≤Λmin(Γ) max
U

1

2
‖S − Γ‖2F + λ ‖Σ‖1,off +

〈
U,Γ− Σ

〉
+
ρ

2
‖Γ− Σ‖2F

where U is the Lagrange multiplier matrix. We proceed iteratively, where we have the solution

Σ(t),Γ(t), U (t) at the tth step.

Step 1. Update Σ with the following soft thresholding problem:

Σ(t+1) = argminΣ(i,i)=1λ ‖Σ‖1,off +
ρ

2

∥∥∥∥1

ρ
U (t) + Γ(t) − Σ

∥∥∥∥2

F

which admits the closed form solution:

Σ(t+1)(i, j) =


sign(Γ(t)(i, j) + 1

ρU
(t)(i, j))(Γ(t)(i, j) + 1

ρU
(t)(i, j)− λ

ρ )+, if i 6= j

1, if i = j

.

Step 2. Given Σ(t+1),we then update Γ with

Γ(t+1) = argminτ≤Λmin(Γ)

∥∥∥∥∥Γ− S + ρΣ(t+1) − U (t)

(1 + ρ)

∥∥∥∥∥
2

F

which has the solution

Γ(t+1) = P+

(
S + ρΣ(t+1) − U (t)

(1 + ρ)
, τ

)
where, for a matrix A, with spectral decomposition

A =

d∑
j=1

δjvjv
T
j

P+(A, τ) =

d∑
j=1

max(δj , τ)vjv
T
j .

.

Step 3: Update U (t+1) = U (t) + ρ(Γ(t+1) − Σ(t+1)).
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