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HIGHLIGHTS  
• Persistent metal contamination exists: each metal exceeded water quality standards 

every year. 
• Mines and mining history have significant effects on Lima’s water supply, not addressed 

by the current permitting, remediation, monitoring and source control systems. 
• No time trends observed in median contamination over the seven-years of data.  This is 

a very short period relative to the mining history. Extreme contamination events, 
however, did increase slightly over time.  

• Spatial trends are present, with more contamination upstream near mines and 
downstream before reaching Lima. These trends are not explained by recent  
production and flow data, but suggested inclusions for future analysis include historical 
mining production, effluent treatment, remediation, natural leaching, informal mining, 
and legacy sites.  

 
KEY WORDS: Water quality, heavy metals, mining, cumulative effects, Peru, water 
contamination 
 
 

ABSTRACT 
 
The Rimac river provides drinking water to Lima, the capital of Peru. Mines upstream release 
heavy metals into the river, but these can also be introduced by natural leaching, informal 
mining, and waste from previous mines. The effect of mining on water resources in Peru has 
instigated social conflict; identifying likely sources of contamination can suggest whether 
conflicts were related to real impacts or perceptions. This study models heavy metal 
concentrations using the mass of minerals produced by upstream mines to assess the 
contribution of mines to downstream pollution. We also analyze temporal and spatial trends in 
water quality data, using quantile analysis to evaluate median and extreme pollution. Historical 
water quality data from the Peruvian government was used, including concentrations of iron, 
cadmium, lead, chromium, copper, zinc, and manganese. These were measured twice monthly 
over seven years at 29 points in the Rimac basin. Concentrations that exceeded Peruvian water 
quality standards were modeled with monthly flow and mine production data, using multiple 
linear regression, at three metallurgical and mining sites. The data was compared with key 
events such as conflict, mine closures, and regulation changes. Analysis showed that 100% of 
the metals studied exceeded the water quality standards every year. Time trends were not 
present in median pollution, but in the 90th, 95th, and 99th percentiles we observe increasing 
severity of the maximum pollution observations. Spatial analysis showed higher contamination 
in the upstream and downstream portions of the basin which may indicate cumulative effects. 
The approach taken in this study is worth repeating, given the possibility of distinguishing 
current water quality impacts from long-term cumulative effects. 
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1. INTRODUCTION 
 
This paper assesses cumulative effects of water contamination through a basin-level 
quantitative analysis of water and mining related data. The Rimac Basin in Peru, which drains to 
the largest Peruvian City, Lima, is considered for the analysis given the history of mining in the 
upper catchments of the river, and the importance of the water supply to Lima. Cumulative 
effects of mining on water quality can occur even if the pollutant loads from individual mines 
are well regulated, and may be manifest as trends in space (e.g., downstream) and/or in time. 
While the potential for cumulative effects of mining on riverine systems is recognized, there is 
not much literature that quantifies such long-term effects. Since water quality degradation is 
noted as a source of mining-water conflict in Peru (Bebbington and Williams, 2008), an 
examination of the available data in the Rimac basin was of interest. The typical regulatory 
process for mine effluents is usually composed of an initial environmental impact assessment, 
an assessment of the waste load capacity of the water body, followed by a prescription for the 
permissible load and discharge of pollutants from the mine. While environmental monitoring of 
the river system is often done, the analysis of spatial and temporal trends to inform the 
regulatory process to attribute the outcomes to specific permitted discharges is rarely done. 
This provides one context for the work presented here – an initial assay of typical 
environmental data that has been historically collected to see if such cumulative effects can be 
identified with the quantity and quality of environmental data that may be typically available in 
a setting such as Peru. The remainder of this section provides the context for the specific 
pollutants of interest, a definition of cumulative effects and an overview of the Peruvian 
setting. The data and methods used are reviewed in the next section, followed by a discussion 
of the main findings and of the future directions.  

 

1.1 EFFECTS OF HEAVY METALS IN WATER 
 
Many heavy metals and transition metals are essential for human health (Hanikenne, Merchant 
and Hamel 2009), but high doses are toxic, in part because metals bond to sulfur groups, 
interrupting cellular activity and contributing to oxidative damage. Negative health impacts of 
heavy metals have been observed in Peru (Ramos 2008). High levels of dissolved or colloidal 
metals are usually detrimental to the natural environment. They pose a risk to flora and fauna, 
especially to aquatic biota (Besser, Finger and Church 2007), and the effects are compounded 
due to bioaccumulation. Heavy metals and low pH are known to be inversely correlated to plant 
growth, and the presence of heavy metals damages plant cell structures and inhibits enzymatic 
activity (Chibuike and Obiora 2014).  
 
The definition of heavy metals is not uniform in the current literature. Following the pragmatic 
definition suggested by (Hübner, Astina and Herberta 2010), the heavy metals we consider in 
this study include iron, manganese, cadmium, copper, lead, zinc, and chromium.  
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1.2 CUMULATIVE EFFECTS 
 
Cumulative effects are defined as “the impact on the environment which results from the 
incremental impact of the action when added to other past, present, and reasonably 
foreseeable future actions” (Council on Environmental Quality 1997). Cumulative effects are 
especially important when considering heavy metals. Metals are a conservative contaminant 
not readily transformed in a way that removes them from an ecosystem. In the mining industry, 
cumulative effects can be caused by space crowding, time crowding, interactions, or indirect 
effects (Kaveney, Kerswell and Buick 2015). Considering cumulative effects requires a 
catchment-based approach to water management (Interntional Council on Mining and Metals 
2015). Cumulative effects of any certain or reasonably foreseeable actions should be 
considered within Environmental Impact Assessments both in the U.S. and in Peru. A standard 
method for their evaluation does not exist (Environmental Law Alliance Worldwide 2010), but 
best practices have been suggested (Solomon, et al. 2016), (Kaveney, Kerswell and Buick 2015).  
 
Cumulative effects are not seen as a regulatory issue by the permitting agency of the Peruvian 
government (personal communication with Peruvian government official, Oct 2016). However, 
consideration of cumulative effects can only be effective if sustained throughout the process, 
including the creation of laws and standards, impact assessment, permitting, fines, and regional 
environmental studies. Understanding water risk and accumulation of heavy metals not only 
protects the environment and human health, it also helps companies and governments know 
what is a sustainable investment. Water treatment and other infrastructure used to be 10% of 
mining companies’ infrastructure cost; now it's 30% (Gillespy 2016). To make better use of all 
infrastructure, mines are increasingly located in clusters. The cumulative impacts of such 
arrangements are not well understood, but are important. 
 

1.4 WATER AND MINING IN PERU  
 
Mineral commodities account for 60% of Peru's exports, primarily gold, copper, and zinc 
(Ernst&Young 2015). Peru is South America’s most water-stressed country and every year 
mining and metallurgy release over 13 billion m3 of effluents into Peru’s bodies of water 
(Bebbington and Williams 2008). Connections between mining and water risks are many. Based 
on discussions with the Peruvian National Water Authority, the present study is the first of 
mineral transport in surface water in Peru (personal communication, 2016). 
 
Water availability is one point of contention related to mining in Peru. In southern Peru, water 
tables are reported to be declining and entire lakes have been depleted due to mining 
operations (personal communication with mining industry personnel, 2016). Mine openings are 
limited to locations where a reliable water source can be secured. At times, mining projects 
previously approved by the government have been cancelled due to the expectation of water 
competition between agriculture and mining, for example in Tambogrande (Markham 2003) 
where Manhattan Minerals abandoned plans to mine a copper and gold deposit. It is also 
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notable that water resources in Peru can become a point of collaboration (Valdez Humbser 
2012), not only competition. However, places where water availability has improved as a result 
of synergistic development and responsible mining operation pass largely unnoticed and 
undocumented.    

In addition to water quantity impacts, changes to water quality are a major effect of mining in 
Peru. Contamination from mining affects population centers, which are concentrated to the 
west of the Andes, as well as fragile ecosystems to the west. Active mines, closed or abandoned 
mines, informal mining, natural leaching, agriculture and other industries often affect water 
quality in the same basin. Regulation and monitoring was non-existent when mining first was 
established in Peru, resulting in environmental risks from over 4,000 high risk legacy sites today 
nation-wide (Defensoria Del Pueblo 2015). 
 

1.5 REGULATORY AND SOCIAL CONTEXT 
 
Levels of heavy metals in surface water in Peru are governed by the Environmental code of 
1990 with regulatory updates by the Ministry of Environment for mining effluents in 1996 and 
for water bodies in 2008 (Llontop 2010). Effluents from mines are regulated by Maximum 
Permissible Limits (MPL). The effluents mix with surface water which is regulated via Standards 
of Environmental Quality (ECAs for the name in Spanish). Exceedance of MPLs can be fined, as 
can discharge without a permit and established MPLs, but there are no sanctions regarding 
ECAs unless causality can be proven. Ideally, the MPLs for each mine in an area would be 
determined such that if all are being met, the ECAs are also maintained. For this, an 
understanding of cumulative effects would be necessary, but MPLs might not be adequate even 
in isolation. MPLs are determined within Environmental Impact Assessments (EIA), which the 
mining company submits to the government. The agency that approved these documents, 
previously within the Department of Energy and Mines, had limited capacity to challenge the 
claims and reports prepared by mining companies. Upon review of six approved EIAs for 
Peruvian mining projects, we found that rather than predicting amounts of heavy metals 
released, the EIAs commonly cite the regulations that pertain to specific bodies of water and 
make a written assurance that the mine will pollute only within those limits. When a mine’s 
discharge surpasses their MPL, fees may be symbolic or forgiven. The agency responsible for 
fines, OEFA (the Organism of Environmental Evaluation and Oversight), saw its power 
decreased with Article 19 of Law 30230. This is popularly known as the paquetazo ambiental, 
meaning “environmental package” that has burdensome consequences.  
 
The perceived unfairness or ineffectiveness of these processes create a lack of trust by local 
communities. This exacerbates social conflict over mining's effect on water resources (Slack 
2013) and often slows or halts extraction. This has occurred at the mines Tia Maria, Las Bambas, 
La Zanja, Conga, Antamina, Yanacocha and others in Cajamarca and Piura. Both the impacts of a 
mine on critical water resources and the perception of impacts are factors in social unrest 
(Interntional Council on Mining and Metals 2012). For example, communities upstream of 
mines have reported pollution, indicating that “mining is associated with contamination 
through perception as well as reality” (Budds 2015). Environmental Impact Assessments which 
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consider cumulative effects would improve neighboring communities’ trust that all impacts are 
being considered (Slack 2013). 
 
Over the last decade, progress has been made toward improving regulation, reporting, and 
monitoring on a project basis. This includes updated Environmental Quality Standards in 2008 
(Llontop 2010) and 2015, and a requirement for citizen involvement and monitoring. It is 
usually nominal, but at least 30 communities are actively monitoring water quality (UNDP 
2016). These recent developments may improve understanding and reduction of negative 
project impacts. However, the impacts of multiple mining projects and contamination sources 
are still not well understood.  
 

1.6 RIMAC BASIN 
 

The Rimac River starts at an elevation of over 5,000 meters above Mean Sea Level in the Andes 
mountain range and has three main tributaries: Blanco, Aruri, and Huaycoloro. It then goes to 
the La Atarjea treatment plant before entering Lima, the capital of Peru, as potable drinking 
water. Water-intensive industries in the Rimac basin include agriculture, hydropower 
generation, and mining. The mines are mostly located in the Andes mountain range, where 
most springs and headwaters are located. The distribution of key water resources and mines in 
Rimac is representative of many other basins and shown in Figure 1 and Figure 2.  

 
FIGURE 1: THE RIMAC BASIN SHOWN WITH GLACIERS 

(WHITE), LAKES (DARK BLUE), SPRINGS (LIGHT BLUE 

DIAMONDS), AND AREAS AT HIGH RISK FOR DEBRIS 

FLOW (DARK BLUE DIAMONDS).   

FIGURE 2: RIMAC RIVER WITH THE MAIN 

TRIBUTARIES. MINES ARE SHOWN IN RED INCLUDING 

THOSE IN EXPLORATION, AND THE WATER QUALITY 

MONITORING STATIONS ARE SHOWN IN BLUE. 

 
 
Water-related risks in the Rimac basin include debris flow and diminishing glaciers. Earthquakes 
are common, and there are tailing dams near seismic faults (personal communication with 
National Water Authority, 2016). The Rimac basin has environmental degradation and a long 
history of mining. Of 1,185 sources of contamination within the basin, 60 are mine effluents 
which are all in the upstream section of the basin (K-Water; Yooshin Engineering; Pyunghwa 



7 
 

Engineering 2015). There are 274 high-risk legacy sites in the Rimac basin (K-Water; Yooshin 
Engineering; Pyunghwa Engineering 2015). Analysis of the Rimac basin is facilitated by more 
data availability than for most areas of Peru, and the results are important to decision makers 
in Lima. Understanding contamination in the Rimac basin was identified as especially vital 
because it becomes drinking water for the eight million people in Lima.  
 
In one study of water quality, cadmium and chromium were below the permissible limits, but 
elevated levels of arsenic and lead were found (Juárez 2012). Contamination of heavy metals 
decreased in the early 2000s, but still exceed permissible limits and need to be further treated 
(Llontop 2010). In 2004, concentrations of cadmium were found along the entirety of the Rimac 
basin that exceeded Swiss and World Health Organization limits, as well as high concentrations 
of copper, lead, zinc and arsenic at many locations. The high levels of cadmium may be caused 
by mining both directly and indirectly. Processing of sphalerite and pyrite found in the region 
forms sulfuric acid, which facilitates leaching of minerals such as cadmium present in the 
natural geology. All but arsenic were attributed to mining based on the geochemistry of the 
region and the mining activity. At the time of that study only arsenic exceeded the legal limits 
(Méndez 2005), but the Peruvian water quality standards have since been updated. In the San 
Mateo district of Rimac, exceedances of cadmium, lead, manganese, arsenic and iron motivated 
a suggestion for improved treatment of the effluent of nearby mining company San Juan S.A. 
(Llontop 2010), though no direct link was shown. Heavy metals in streambed sediments also 
exceeded limits in Rimac and the two adjacent basins (Rivera, et al. 2007).  

2. DATA AND METHODS 

2.1 DATA COLLECTION 
All government agencies are required to report water-related data to the National Water 
Authority. Any Peruvian citizen has access to any information held by the government, though 
obtaining it is a long and complicated process (Valdez Humbser 2012). The information is 
provided as a physical copy, which does not facilitate analysis, understanding, or subsequent 
action.  
 
The data and background information for this study were obtained online and through personal 
meetings with government agencies, consulting companies, mining companies, non-profits, and 
communication with researchers who have done similar studies. The data used for the analysis 
and respective sources are listed in Table 1 .  
 

Data Details Source  Reference 

Water quality  Metal concentrations, 
monthly from 2004-2011 

General Direction of 
Environmental Health 

(DIGESA, 2010 

Mine 
production 

Monthly per metal, per 
mine 

Ministry of Energy and 
Mining 

(MINEM, 2016) 
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Volumetric 
flow 

Monthly since early 
1900s for one station, 
middle of the basin 

National Water Authority (ANA, 2014) 

Monitoring 
station 
locations 

29 stations along the 
Rimac river and 
tributaries 

DIGESA reports, 
validated by researcher 
accompanying ANA  

(Juarez, 2012) 

Mine locations 20 mines and mining 
operations, 6 active 
within the study period  

SNL Metals and Mining 
Database, validated with 
various online sources 

(SNL, 2016) 

Locations of 
water bodies 

Lakes, rivers, glaciers and 
basin boundaries 

Autoridad Nacional del 
Agua 

(ANA, 2014) 

TABLE 1: DATA USED AND SOURCES 
 
There are potential issues with water quality data.  A community organizer and resident of 
Chosica, a town located on the Rimac river, shared the perception that National Water 
Authority chooses to take samples far from the mining operations where they know it is least 
likely to be contaminated (personal communication, 2016). Officially, all sampling is done 
according to a planned experimental design, with consistent locations. For the data we used, 
two of the years provided geographic coordinates for the collection of the samples, of which 
only one varied significantly (by about 0.5km), indicating that the locations for this data were 
relatively consistent. However, another government agency mentioned changing the location of 
monitoring due to excavation that was being done just upstream of the monitoring station 
(personal communication, 2016), to avoid undue influence of sediment from the contaminating 
event on the sample. It is possible that true contamination is higher than the available data, 
due to attempts to avoid sampling in the most contaminated areas. In addition, based on 
discussions with people who have worked in mines, NGOs, community members and 
governments, mining companies are reported to know when the government agencies plan to 
take water samples, so they could preemptively shut down some of the operations on that day. 
 
Data that were not obtained for this study, and represent potentially important gaps in the 
analysis, include: (1) flow data for each point of the basin studied, and (2) locations of informal 
mining hubs and estimates of their production.  
 
Data was collected during trips to Lima in May 2016 and October 2016. Interviews were held 
with over 60 stakeholders to understand the local context and complexities that affect water 
quality in mining regions. Meetings were held with government agencies, non-profits, 
community members, environmental monitoring committees, universities, and mining 
companies. 
 

2.2 GEOGRAPHIC SITING 
 
A trip along the entirety of the Rimac River and part of the Blanco River enabled verification of 
the geographical data obtained and status of mines. The geographically referenced data was 
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mapped using ArcMAP, RStudio, and Google Earth. The basin’s distribution of water resources, 
mining areas, legacy sites, monitoring locations, and main towns were analyzed. Key areas were 
chosen where multiple water quality stations and mines or mineral processing were active 
during the time period of the study. For each of the areas chosen, events such as mine closures, 
openings, sales, and social conflict were identified by reviewing historical Peruvian news 
sources and mining investment news.  
 
A town in the middle of the basin, Chosica, had the most complete streamflow data and was 
used to represent flow basin-wide. There is more precipitation at higher elevations in the Rimac 
basin, but all rivers within the basin have similar annual cycles (Méndez 2005). Flow patterns at 
other places along the river are expected to be similar to Chosica, with a scaling behavior that 
relates to the drainage area at the location and water extraction.  
 

2.3 NETWORK DEVELOPMENT  
 
To understand cumulative effects, complete development of a cause-effect network “which 
defines the interconnections for the web of effects” is critical (Solomon, et al. 2016). We 
created a network for Rimac, excluding mines that were not active during the study period and 
monitoring stations that had little or no data. We identified points in the network that could be 
modeled on a regional level, i.e. a monitoring station that had a major mine or mineral 
processing plant immediately upstream and another monitoring station upstream of the mine.  
 
Many mines were identified in the Rimac basin, as well as areas under exploration and legacy 
sites. Only a few mines and mineral processing sites had production data during the period of 
this study, and are shown in red in Figure 3. 
 

 
FIGURE 3: THE NETWORK CONNECTIONS USED FOR MODELING IN THE RIMAC BASIN. 
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The three mines considered part of the Casapalca mining complex (Los Quenales, Americana, 
and Rosaura) are consolidated as a cluster. The coordinates of sampling sites and network 
dependencies are available in the supplementary materials. The network shown in Figure 3 
includes flow from outside of the basin due to a re-routing tunnel (Graton tunnel) that brings 
water from the Atlantic side of the Andes to the Pacific side. It also includes a separate possible 
source of mining contamination, indicated by the red line extending from the top right of the 
graph. These are the Ticlio and Morococha mines; though outside the sampling network, they 
are close enough that they could be a source of contamination.  
 
The black dots in Figure 3 are water quality monitoring sites that were active during the study 
period. The water quality detection limits and water quality standards for each metal are shown 
in Figure 4. 
 

 
FIGURE 4: DETECTION LIMIT AND WATER QUALITY STANDARD FOR EACH METAL. 

 
In all cases, the detection limit was less than the water quality standard. This allowed all 
exceedances of the standards to be quantified. Because we were interested in exceedance of 
the water quality standards, and all the censored data was below the standards, some of the 
analyses and modeling could be done using generalized linear models appropriate for threshold 
exceedance data (Schwarz, et al. 2006). 
 
For each time 𝑡 where there is a reading of water quality, concentration 𝐶 of contaminant 𝑐 is 
provided at a given location (longitude 𝑥, latitude 𝑦, and elevation 𝑧). This is assigned to the 
nearest station 𝑠, even in cases when the exact 𝑥, 𝑦, 𝑧 values vary between years. Likewise, 
production 𝑃 is summed where the mine location 𝑥, 𝑦, 𝑧 is within a small diameter 𝛿 of a 
central location 𝑥∗, 𝑦∗, and owned by the same parent company, thereby designated as being 
within ball 𝛽: this is called mine location 𝑙. 
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𝑷𝒎,𝒕,𝒍 = 𝑷𝒎,𝒕,𝒙,𝒚,𝒛 | (𝒙, 𝒚) 𝝐 𝜷(𝒙∗, 𝒚∗, 𝜹)           𝑪𝒔,𝒕,𝒄 = 𝑪𝒕,𝒄,𝒙,𝒚,𝒛 | (𝒙, 𝒚) 𝝐 𝜷(𝒙∗, 𝒚∗, 𝜹)          EQUATION 1 

 
Thus, two- or three-dimensional spatial relationships are reduced to a subset of linear 
structures where causal effects can be modelled. Where the spatial arrangement from 
upstream to downstream is 𝑠𝑖 → 𝑙 →  𝑠𝑖+1, the model dependencies are as follows, such that 
downstream concentration is influenced by the concentration upstream of the mine and the 
production of the mine or mining cluster.  
 

𝒇(𝑪 𝒔𝒊+𝟏,𝒕,𝒄 |𝑪 𝒔𝒊,𝒕,𝒄 , 𝑷𝒎,𝒕,𝒍 )   EQUATION 2 

    
Three regions were identified with water quality readings both upstream and downstream of a 
mine or mine operations, where the mine was also classified as medium or large by the data 
provider MINEM and there were at least 12 months of production during the study period. 
 

 2.4 PRODUCTION 
 
For the production data, a rank and sum method was used to derive an index. The rank of each 
observation for a specific metal 𝑚 and mining location 𝑙 was identified within its time series, 
and used to replace the observation magnitude. 

 

𝑹𝒎,𝒕,𝒍 = 𝒓𝒂𝒏𝒌{𝑷𝒎,𝒕,𝒍}𝒕=𝟏

𝑻
   EQUATION 3 

 
For mines that were active during the entire study period, total months  𝑇= 84 = 12 months × 7 
years, though some locations had fewer than 84 values. These ranks were then summed to 
form the index time series as shown in 𝑺𝒕,𝒍 =
∑ 𝑹𝒎,𝒕,𝒍  |  𝒎 𝝐 {𝑪𝒅, 𝑪𝒖, 𝑷𝒃, 𝑨𝒈, 𝒁𝒏, 𝑨𝒖}𝒎    Equation 4, summed over the six minerals 
produced. 
 
𝑺𝒕,𝒍 = ∑ 𝑹𝒎,𝒕,𝒍  |  𝒎 𝝐 {𝑪𝒅, 𝑪𝒖, 𝑷𝒃, 𝑨𝒈, 𝒁𝒏, 𝑨𝒖}𝒎    EQUATION 4 

 
This method allows a comparison of metals that have very different ranges and units, and 
reduces the undue influence of outliers. This index was then used as a predictor for trends in 
water quality. Using a similar process, we also normalized the production and tested that as a 

predictor. Thus, the model equation (𝒇(𝑪 𝒔𝒊+𝟏,𝒕,𝒄 |𝑪 𝒔𝒊,𝒕,𝒄 , 𝑷𝒎,𝒕,𝒍 )   Equation 2) is more specifically 

represented with 𝑺𝒕,𝒍 or the normalized production in place of 𝑷𝒎,𝒕,𝒍. 
 
 

2.5 WATER QUALITY 
 
Water quality data from 2004 to 2016 was compiled from four Peruvian government agencies - 
the General Direction of Health (DIGESA), the National Water Authority (ANA), Lima’s Drinking 
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Water and Sewer Service (SEDAPAL), the Organism of Environmental Evaluation and Oversight 
(OEFA), as well as other short-term monitoring by community groups, non-profits, and 
academics (Méndez 2005), (Llontop 2010). Comparisons showed that the DIGESA data was 
more frequently and regularly recorded than any of the other sources, so it alone was used in 
the data analysis. The data available in this consistent and complete format ended in 2010. 
 
The reports provided many water quality parameters, but we used only heavy metals. While 
sulfates and pH may be informative in mining areas, they can also be affected by other 
industries. Heavy metals in the Rimac basin are most likely introduced by natural geochemistry 
or mining. We chose a subset of seven metals based on the completeness of the data available.   
 
For most measurements, month and year were provided but not the date or time. All 
measurements were assigned a decimal time at the midpoint of each month.   
 
Concentrations below the detection limit (DL) of the measurement technique had been 
reported as DL, <DL, or 0. There were also NA values which were assumed to be distinct, 
representing non-completion of a test. The detection limit varied by metal and changed during 
the study period presumably due to improving measurement techniques, creating multiply 
censored data. We compiled a database across all stations and determined the detection limit 
for each metal as the lowest reading excluding 0 values, which were likely inconsistent 
reporting and were considered the same as <DL. We converted all 0, DL, and <DL values to DL.  
 

𝑪𝒔,𝒕,𝒄 =  {
𝑪𝒔,𝒕,𝒄 , 𝑪𝒔,𝒕,𝒄 > 𝑫𝑳

𝑫𝑳 , 𝑪𝒔,𝒕,𝒄  ≤ 𝑫𝑳
               EQUATION 5 

 
Normally, this would then require censored regression. But because we later convert to binary 
values based on exceedance, for which all thresholds are above the DL as seen in Figure 4, we 
treat the resulting data as an indicator of contamination rather than censored data.   
 
There were many missing values in the original data; over sixty percent of the expected results 
were reported as NA or left blank. To complete the data we used multiple imputation by 
chained equations (van Buuren and Oudshoorn, 2007), with five imputations using predictive 
mean matching.   
 
To compare between metals, the value of interest is not concentration but rather how much a 
concentration exceeds the water quality standard (ECA) for a given metal contaminant 𝑐. The 

exceedance ratio 𝐸 for each time and station was calculated according to 𝑬𝒔,𝒕,𝒄 =
𝑪𝒔,𝒕,𝒄 (

𝒎𝒈

𝑳
)

𝑬𝑪𝑨𝒄 (
𝒎𝒈

𝑳
)
          

Equation 6. 
 

𝑬𝒔,𝒕,𝒄 =
𝑪𝒔,𝒕,𝒄 (

𝒎𝒈

𝑳
)

𝑬𝑪𝑨𝒄 (
𝒎𝒈

𝑳
)
          EQUATION 6 
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The legal limits 𝐸𝐶𝐴 were obtained from a DIGESA water quality report and varied for each 
metal. The ECAs are determined by the classification of each water body. The Rimac River, 
upstream of Lima’s water treatment plant, is categorized as "Category 1": superficial waters 
destined to produce drinking water. The sub-category "A2" indicates that it can be made 
potable with conventional treatment as opposed to simply disinfection or more advanced 
treatment (Dirección General de Salud Ambiental 2010).  
 
The filled matrix with concentration values was also subjected to a quantile analysis. For each 
percentile 𝑖, a new matrix was created with binary values depending on whether the 
concentration at a given station, month, and contaminant exceeded the 𝑖𝑡ℎ percentile of all 
data for that contaminant. An aggregate exposure index 𝐼 was then computed by summing this 
binary exceedance index over the seven metals, for each sampling date at each station. 
 

𝒒𝒔,𝒕,𝒄,𝒊 = {
𝟎 , 𝑪𝒔,𝒕,𝒄 ≤ 𝑸𝒊   

𝟏 , 𝑪𝒔,𝒕,𝒄 > 𝑸𝒊   
         EQUATION 7 

 
𝑰𝒔,𝒕,𝒊 = 𝒒𝒔,𝒕,𝑪𝒅,𝒊 + 𝒒𝒔,𝒕,𝑪𝒖,𝒊 + 𝒒𝒔,𝒕,𝑪𝒓,𝒊 + 𝒒𝒔,𝒕,𝑷𝒃,𝒊 + 𝒒𝒔,𝒕,𝒁𝒏,𝒊 + 𝒒𝒔,𝒕,𝑴𝒏,𝒊 + 𝒒𝒔,𝒕,𝑭𝒆,𝒊 EQUATION 8 
 
Where 𝑖 = {50, 90, 99, 95}. This resulted in a single number per time period, per station, that 
was used for trend identification.  
 
Given the history of mining, heavy metals likely accumulated in the period preceding our study. 
Thus, natural processes including attenuation, advection, adsorption by sediments, erosion and 
sediment transport may lead to random fluctuations in the concentration measurements over 
space and time. By focusing on the extreme values of contamination we reduce the effects of 
such processes and are better able to identify significant events and trends within the study 
period, and explore corresponding sources. This leads to the focus on the upper quantiles of 
the data. 
 

2.6 EXPLORATORY ANALYSIS 
 
The distribution and trends of data were analyzed using Mann Kendall tests, seasonal Mann 
Kendall, and local regressions. Similar tests were done for each station, and for each metal. 
Trends were analyzed for the whole basin, each mining location, and for the downstream 
stations right before Lima.  
 
The normalized production of each metal for a given mine was plotted over time. Abrupt 
changes were compared to events such as social conflict, fines, changes in regulation, or 
changes in mine ownership or operation. The metal exceedances over time were graphed with 
the time trends of mine production, to visually identify correlations between water quality and 
mine production. This was also done quantitatively using correlation matrices for each area. For 
more details on the mine-specific analyses, see (Butler 2017).  
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2.7. NETWORK MODEL 
 
To study basin-wide effects, a variety of models were tested with water quality as the outcome 
variable. We modelled the first principal component of water quality for the whole basin with 
flow as the predictor variable, and did the same for the farthest downstream stations. Then, the 
principle component of the farthest upstream station was added as a predictor, as was flow. 
Finally, the time series produced by each quantile analysis was modeled with the summed 
production rank time series.   
 
To model a given metal at the selected stations downstream of mining locations, the outcome 
variables tested were concentration and log(concentration). The predictor variables included 
flow, log(flow), lagged flow, decimal time, and time squared. Selection of variables, 
transformations, and lags were guided by the USGS SPARROW water quality model, adapted for 
heavy metals (Schwarz, 2006). Further details on the model design and outcomes are not 
elaborated here but are available at (Butler 2017). When doing linear models of just one metal 
we primarily used zinc because it had the most complete data. As predictors, we also included 
concentrations of other metals at the same station, concentrations of the same metal at 
upstream stations, and logarithms thereof. Visual comparison of the production and quality 
plots suggested times when an exogenous variable might have had an effect that cannot be 
captured by flow, time, and the concentrations of other metals. 
 

3. RESULTS AND DISCUSSION 
 
The key findings of the temporal and spatial analyses are presented in this section with figures.  

 Figure 5: Maximum exceedance for each month, across all stations and metals. The 
incidence of extreme pollution, surpassing the legal water quality standards, increases 
over time. 

 Figure 6: trend over time for the 50th, 90th, 95th, and 99th percentiles. The 50th 
percentile shows variation but no net trend over time. As we increase to higher 
percentiles, an upward time trend appears. 

 Figure 7: Production, summed ranks for all mines and mineral processing in the basin 
over time. Production varies according to mine closures, opening and other events. The 
trend is similar to a local regression of the 50th percentile of water quality. 

 Figure 8: spatial trends for the 50th, 90th, 95th, and 99th percentiles. The overall trend 
is upwards, but the more descriptive pattern is a U-shape with higher contamination far 
upstream and downstream, and lower in the middle of the basin.  

 
Other findings are summarized briefly and include:  

 The variables that helped predict water quality were distinct for each of the three 
mining locations.  

 At none of the locations was the model satisfactorily successful in explaining water 
quality variation, using production, upstream pollution, and flow as predictors.  
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 The spatial network needed to be modified to include connections not indicated by 
surface water flow direction alone.  

 

TEMPORAL TRENDS  
 
For each month, the maximum exceedance was determined, and the time series are shown in 
Figure 5.   

 
FIGURE 5: MAXIMUM EXCEEDANCE FOR EACH MONTH, ACROSS ALL STATIONS AND METALS. 

 
This exceedance ratio represents the number of times by which the water quality standard was 
surpassed. The blue line is a linear regression and the green is a local regression. The linear 
regression shows that the extreme pollution events started at about 10 times the water quality 
standard, and increased to 40 times the standard. A Mann Kendall test revealed a tau value of 
0.224 and a 2-sided p-value of 0.0031, indicating an increasing trend as seen in the plot. A 
Mann Kendall test was done for each station separately, and all but four stations also had 
increasing trends.  
 
Exceedances were also considered separately per metal. For each of the seven metals, the ECA 
was exceeded every year. For plots of each metal and Mann-Kendall test results for the 
upstream stations, see (Butler 2017). Lead and iron consistently had many readings exceeding 
the limits, more than the other metals. 
 
Next we present the results of the percentile analysis of temporal trends. For each date, the 
number of metals exceeding the ith percentile at any station was summed and plotted in Figure 
6Figure 6. This shows a time trend representing the high and extreme values of heavy metal 
contamination, basin-wide.  
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FIGURE 6: TREND OVER TIME FOR THE 50TH, 90TH, 95TH, AND 99TH PERCENTILES 

 
The local regression is shown in green and linear regression in blue. There was no time trend for 
the 50th percentile, confirmed by a Mann-Kendall test. For the higher percentiles, there was a 
slight upward trend but not statistically significant. Seasonal Mann-Kendall also did not show a 
strong trend. The plot of the 99th percentile data is very similar to the maximum exceedance 
trend in Figure 5Figure 5. Though the method to arrive at the plots was different, both methods 
addressed the goal of understanding events of extreme contamination and the trend over time. 
The results of the Mann-Kendall tests for each percentile are given in Table 2. 
  

Percentile Tau 2-sided p-value 

50th -0.048 0.52367 

90th 0.104 0.17076 

95th 0.103 0.17652 

99th 0.179 0.026744 
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TABLE 2: MANN-KENDALL RESULTS FOR TIME TREND 
 
While the median contamination shows no discernible time trends, there is an upward trend 
for extreme incidents. The magnitude of this trend is based on the increasing number of 
contamination incidents per month. In the 99th percentile graph in Figure 6, we see the 0.179 
tau value represents an average increase from 1 exceedance per month to 3. This finding 
suggests that most of the extreme violations are recent. These severe pollution events, as 
defined by a large number of metals exceeding the higher percentiles, are a grave concern for 
the environment and human health for reasons explained in the introduction.  
 
The time trends of water quality were not explained by mining production over this 7-year 
period. The representation of the summed mining activity in the basin over time is given in 
Figure 7. As discussed previously, the ranks are calculated for each mineral at each mine, which 
is summed monthly to obtain a basin-wide representation of mining activity.   

 
FIGURE 7: PRODUCTION, SUMMED RANKS FOR ALL MINES AND MINERAL PROCESSING IN THE BASIN OVER TIME 

 
Unlike contamination over time, production has distinct time trends: a steady increase, a 
decrease, and a sharp increase. This is a similar trend to the local regression of the median (50th 
percentile) in Figure 6, though the final increase starts in different years. The major changes in 
Figure 7 correspond to mine opening and closures, and a dramatic increase in the refinery’s 
production. By modeling the water quality time trend using the production summed over the 
basin, we confirmed that neither production nor flow are significant predictors.   
 

SPATIAL TRENDS 
 
Water quality was found to be most compromised at the upstream and downstream parts of 
the basin. This trend was seen in each of the four percentile analyses. These are presented in 
Figure 8, and the corresponding Mann-Kendall test results in Table 3. 
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FIGURE 8: SPATIAL TRENDS FOR THE 50TH, 90TH, 95TH, AND 99TH PERCENTILES 
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Percentile Tau 2-sided p-value 

50th 0.222 0.082894 

90th 0.173 0.17905 

95th 0.163 0.20792 

99th 0.342 0.0095655 

TABLE 3: MANN-KENDALL RESULTS FOR SPATIAL TREND GOING DOWNSTREAM 
 
An upward trend is present in all percentiles, but it is most pronounced in the 99th percentile. 
The graphs show an upward trend, but the more specific pattern is a U-shape; the highest 
presence of heavy metals is in the upstream and downstream sections with a lower presence in 
the middle of the basin. We expected higher heavy metal concentrations at the upstream 
monitoring locations, due to the presence of more mines. Mining in Peru happens mostly along 
the Andes mountain range which includes the upper portion of the Rimac basin. The mineral-
rich area has historic and active mines, and it’s also possible there is more natural leaching in 
the highlands than in the downstream locations.  
 
The increase in contamination at the downstream locations is a possible indicator of cumulative 
effects. As the Rimac river reaches the flatter section from Chosica to Lima, heavy metals 
carried with sediments have more time to settle to the riverbed. Desorption processes could 
then lead to the high readings in the aqueous phase seen in this analysis.  
 
Though spatial flow data was not used in this analysis, the middle of the basin is where flow 
rate is the highest in the Rimac River (Zoi Environment Network, 2014). Since the water quality 
data used is concentration of heavy metals, the addition or extraction of water quantity may 
also affect the reading of heavy metals. It is possible that the overall metal mass is consistent 
throughout the basin, but the addition of water from tributaries causes the concentration to 
drop in the middle of the basin. Farther downstream after station 18, most of the river water is 
extracted at the La Atarjea drinking water plant, treated, and distributed to the city. Stations 
19-23, downstream of the treatment plant, are the ones with the high concentrations. This 
could reflect desorption from sediments and lower flows, or it could also reflect the 
contribution of effluent from the treatment plant. 
 
It is unlikely that drinking water extraction provides a full explanation for the downstream 
increase in heavy metals. First, the observations of increased contamination begin at station 
E16, which is upstream of the plant. Second, the plant extracts the water, but does not treat for 
metals. The heavy metals observed in this study upstream of La Atarjea remain in Lima’s water 
supply. They do not return to the river’s diminished quantity of flow, and therefore the plant is 
not expected to effect concentration. .  
 
It is likely that flow volume and cumulative effects both influence the spatial trends in heavy 
metal concentration. Spatially distributed flow data would be necessary to differentiate the 
relative contribution of the two factors.  
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MINE LEVEL ANALYSES AND MODELS 
 
Downstream of the Casapalca mining complex, one spike in water contamination coincided 
with a peak in production, and another coincided with a fine for soil contamination and deadly 
conflicts instigated by job loss and poor working conditions at the mine. However, the third 
major spike did not coincide with major events and was at a time when production was only 
half its average value. The production at Casapalca mine does not explain variance or trends in 
the downstream concentration of any metals. 
 
Near the Coricancha mine, the largest spike in exceedance of water quality standards came 
shortly after the mine began production. However, the second highest peak of exceedance 
occurs when the mine is not operating, indicating that other factors may be responsible for the 
heavy metal loading in Rimac in those instances. Comparison with key events explains the 
extreme changes in production and possibly heavy metal loadings not captured in the model 
parameters. It is possible that infrastructure work during rehabilitation released metals into the 
environment. Land shifting near tailings, which has the potential to cause a significant release 
of heavy metals, did not coincide with a peak in water quality exceedances. This indicates that 
the potential problem was addressed in time such that it did not noticeably affect heavy metal 
concentrations.  
 
At the Cajamarquilla refinery, the two largest spikes in nearby water contamination were 
around the same time as production increases. However, the monitoring station where the 
highest concentration was observed was not downstream of the refinery. It was on the main 
branch of the river, upstream of where the refinery’s impact theoretically joins the river. Closer 
investigation revealed that the refinery is close enough to the main river to have a direct effect, 
not only through the tributary as expected. At that station, exceedance of the zinc 
concentration was successfully modeled using the concentration of manganese at the same 
station, and production of copper and zinc at the refinery. The adjusted 𝑅2 was 0.9623, with a 
p-value of less than 2.2 × 10−16 and residual standard error of 0.04313. Modeling other water 
quality measurements and trends were less successful.  
 
For all areas of the basin considered, modeling zinc downstream of a mine was most successful. 
This compares well with previous studies: “zinc found in the water samples is likely to come 
from the polymetallic mines situated in the region” (Méndez 2005), whereas lead, for example, 
may be due in part to active mines but is also likely influenced by a large abandoned mine 
(Ministerio de Energía y Minas 1997). 
 
The mineral production was not significantly correlated with metal concentration in 
downstream water bodies at any of the three mining locations. All such correlations were 
below 0.5. Correlation between the concentration of one metal with the concentration of other 
metals, however, went up to 0.96, and the correlations were generally higher in the 
downstream sections of the basin.  
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The predictor variables for a given metal were different for each area. In some instances, the 
best covariates were different metals at the same station. In others, it was exceedances of the 
same metal, one or two stations upstream. Exceedance data more than two stations upstream 
was not significant in any of the places studied. Flow was not a key variable in the main three 
regression models, but could become important if seasonality is more directly incorporated into 
a model.  

SUMMARY 
 
Our approach to detect cumulative effects includes separating pollution into tiers of extremity. 
By analyzing quantiles rather than only mean values, we identified that current production may 
influence the median whereas cumulative effects may be more aptly captured in the highest 
percentiles of extreme pollution events. Peru was an appropriate case study given the 
widespread prevalence of mines of varying sizes and a long history of mining. 
 
There was little temporal trend in overall metal contamination in the Rimac basin, over the 
seven years considered. This is likely due to the long history of mining in the region, which 
makes a seven-year period insufficient to detect long-term trends. It is a possible indicator that 
temporal cumulative effects are already well underway. If the ecosystems are already impacted 
by past mining, then it is difficult to distinguish a measurable impact of current mining 
production on contamination. It’s also possible that there are other mine-related parameters 
that are more predictive than monthly production, such as amount of waste deposited or 
remediation expenditures. 
 
While there was no trend in the average mineral contamination, a small temporal trend 
became apparent when considering extreme pollution. This is critical because while low levels 
of heavy metals are acceptable or even beneficial, high levels of heavy metals are the primary 
concern. Many analyses of water quality only consider averages, and this study indicates that 
trends in extreme events may be important in quantifying cumulative effects in mining regions. 
In fact, it was the median trend of mineral contamination that was similar to the summed 
production in the basin over time, whereas high percentiles of contamination steadily 
increased.  This is initially counter-intuitive and is perhaps why previous studies have not taken 
such an approach.  
 
The spatial trend was distinct, with increased metal concentration in the upper and lower parts 
of the basin. It was not explained by production, trends over time nor completely by the 
localization of the mining activity. Using river flow at one location over time did not explain the 
contamination, but it is possible that the spatial dimension of flow can help predict 
contamination levels. Perhaps concentrations, which are used for water quality standards, are 
not the best metric for understanding accumulation of heavy metals from mining. Total mass 
may be more influenced by mine production. Even so, the locations of water quantity addition 
and extraction did not completely correspond to the spatial changes in contamination. It is 
likely that cumulative effects are a factor in the spatial dimension as well. 
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Overall, the model parameters of this study did not predict water quality. This is an important 
result, indicating that additional variables such as natural leaching, informal mining, and legacy 
sites may contribute significantly to the heavy metal loading. Exogenous variables such as 
conflict and changes in mine operation seem to be important yet complicated factors. While 
conflict may affect mine production and therefore can indirectly affect water quality, poor 
water quality may also affect or instigate conflict. The 2008 regulation change did not have an 
obvious effect on the time trends and would be more important in a study that uses data 
beyond 2010.  
 
Model improvements would be possible with more consistency in sampling. Unfortunately, the 
most distinct observation has been that an institutional restructuring led to a decrease in data 
post-2011. 
 
The most successful model occurred through a connection that was not part of the original 
network. We recommend a methodology that can reconstruct the network or re-assign 
importance of each connection stochastically based on the data. Though having surface flow 
models could be helpful, that alone would not have sufficiently predicted the direction of 
contamination in the Rimac basin. This could be well supported by a machine learning 
algorithm. Using such a model to iterate the possible inputs and determine which are 
significant would allow a more exhaustive approach and robust model evaluation than was 
done in this study.  
 
A result of immediate importance is that all metals studied exceeded the water quality 
standards at least once each year. If mines usually meet the Maximum Permissible Limit in their 
effluent, then clearly these MPLs are not accurately considering cumulative effects. Analysis 
such as is done here can help identify which mines are most contributing to exceedance of a 
given metal at a given location. This would allow permitting to be done such that it considers 
the local conditions and cumulative effects. Alternatively, if a mine's production is not directly 
linked to exceedance of ECAs, then other causal relationships need to be explored before taking 
action. In the case of the Rimac basin, it seems that mining has a significant impact on the 
water quality. This may eventually lead to external liability for the mines due to long-term 
impacts on the largest metropolitan area. The likelihood of cumulative effects, both in space 
and time, indicate that remediation is needed to stop the flow of heavy metal contamination 
entering Lima.  
 
The approach taken in this study is worth repeating in other areas, given the possibility of 
distinguishing current average water quality trends from cumulative effects caused by long-
term environmental legacies and by the presence of multiple mines in one basin. It may also 
have applicability to other considerations of cumulative effects, such as toxicity in biota from 
bioaccumulation, conflict over resources, or human health affected by a compounding of 
ailments. Complex cumulative effects, being poorly understood and scarcely studied, call for an 
approach that distinguishes average impacts from extreme events. 
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SUPPLEMENTARY MATERIALS:  
 

NETWORK COORDINATES AND DEPENDENCIES: 

Station 
Number 

UTM 
East 

UTM 
North 

Elevation 
(m) 

Description Latitude Longitude Station 
Input 1 

Station 
Input 2 

Source 
Input 1 

Source Input 
2 

1 368956 8716576 4650 Bocatoma laguna Ticticocha, 
Carretera Central km 127 

-11.607 -76.202 
  

Ticlio Morochocha 

1A 369249 8716226 4565 R. Rímac, 100 m aguas abajo de 
la quebrada del efluente Volcan 

-11.611 -76.199 1 
 
Ticlio 

 

2 365360 8715052 4352 Río Chinchán, puente 
Ferrocarril, Carretera Central 
km119,5  

-11.621 -76.235 
  

Los 
Quenales 

 

2A 365229 8711776 4170 Rímac, después del vertimiento 
de la Minera Los Quenuales 

-11.651 -76.236 2 1a Los 
Quenales 

Casapalca 
Complex 

2B 364986 8711490 4161 Rímac, después del vertimiento 
de la C. Minera Casapalca 

-11.653 -76.239 2a 
 
Americana Casapalca 

Complex 
2C 365028 8711520 4154 Río Rímac, 150 m aguas abajo 

de minera PERUBAR - Rosaura  
-11.653 -76.238 2b 

 
Rosaura Casapalca 

Complex 
3 362766 8702497 3530 Río Blanco, Estación 

Meteorológica SENAMHI, 
Carretera Central km 101  

-11.735 -76.259 
    

4 362766 8702498 3512 Río Rímac, puente Anchi II, C.C. 
km 95, San Mateo  

-11.734 -76.259 2c 
   

5 361572 8702554 3418 Río Rímac, después de la 
confluencia con el río Blanco  

-11.734 -76.27 4 
   

6 358794 8700122 3189 Río Rímac, puente Pite, C.C. km 
95, San Mateo 

-11.756 -76.296 5 
   

6a 357845 8698159 3001 Río Rímac, puente Tamboraque 
III, Carretera Central km 90,5  

-11.774 -76.305 6 
   

7 357496 8697078 2957 Río Rímac, Central 
Hidroeléctrica Huanchor 
(puente Tamboraque II)  

-11.783 -76.308 
    

8 357288 8696898 2929 Río Rímac, bocatoma EDEGEL 
(ex Pablo Bonner), C.C. km 89  

-11.785 -76.31 6a 7 
  

9 353456 8694743 2670 Río Rímac, puente Tambo de 
Viso, Carretera Central km 83,5  

-11.804 -76.345 8 
 
Coricancha 
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10 342289 8685619 2004 Río Rímac, puente Surco, 
Carretera Central km 66  

-11.886 -76.448 9 
   

11 319041 8681446 1010 Río Rímac, puente Ricardo 
Palma, Carretera Central km 38  

-11.923 -76.662 10 
   

12 325156 8702613 
 
Río Santa Eulalia, Est. Hidrol. 
Autisha - C.C. Km 31 

-11.732 -76.604 
    

13 318479 8681799 971 Río Santa Eulalia, puente antes 
de la unión con el río Rímac  

-11.92 -76.667 12 
   

14 316708 8681119 908 Río Rímac, puente La Trinchera - 
Moyopampa, C.C. km 35  

-11.926 -76.683 11 13 
  

15 305656 8675326 642 Río Rímac, puente Morón, 
Carretera Central km 23  

-11.977 -76.785 14 
   

16 293037 8671081 391 Río Rímac, puente Huachipa, 
Carretera Central Km 9,5 

-12.015 -76.901 15 
 
Cajamar-
quilla 

 

17 287452 8670464 303 Río Huaycoloro, antes de la 
unión con el río Rímac  

-12.02 -76.952 
  

Cajamar-
quilla 

 

18 286517 8670066 287 Río Rímac, Mirador Nº 1 Las 
Palmeras  

-12.024 -76.961 16 17 Cajamar-
quilla 

 

19 278886 8667889 
 
Puente Santa Rosa  -12.043 -77.031 18 

   

20 275178 8668746 
 
Puente Dueñas  -12.035 -77.065 19 

   

21 272494 8668412 
 
Altura Av. Victor A. Belaunde  -12.038 -77.09 20 

   

22 271259 8668126 
 
Puente Faucett a 50m de 
desembocadura de vertimiento  

-12.04 -77.101 21 
   

22a 269586 8668187 
 
Alt. Av. Santa Rosa  -12.04 -77.116 22 

   

23 
 

8686876 
 
Puente El Emisor - Gambeta  -12.037 -77.122 22a 

   

N.B. that Station 02c is thought to be located downstream of the Casapalca mining complex, 
which agrees with its description and patterns of the monitoring network design, but does not 
agree with the coordinates given here.   

 

 

Spatial trends showing station labels instead of distance as in the paper:  
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