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Executive Summary 
Floods associated with severe storms are a significant source of risk for property, life 

and supply chains. Regional flood risk changes over time due to changes in land use, flood 

mitigation, infrastructure development, and climatic factors. Global assessments of flood risk 
are challenging since they need to account for changing local and global factors, and 
due to limited high-resolution data on key causal factors. Traditional approaches to flood 

risk assessment are typically indexed to an instantaneous peak flow event at a specific 

recording gage on a river, and then extrapolated through hydraulic modeling of that peak flow to 

the potential area that is likely to be inundated. However, property losses tend to be 
determined as much by the duration of flooding as by the depth and velocity of 
inundation. The existing notion of a flood return period based on just the instantaneous peak 

flow rate at a stream gage consequently needs to be revisited, especially for floods due to 

persistent rainfall (>30-day duration) as seen in Thailand, Pakistan, the Ohio and the Mississippi 

Rivers, France, and Germany in the last decade. Such floods may relate to slowly changing 

climate conditions, especially in the tropical oceans, e.g., related to the El Nino Southern 

Oscillation (ENSO) and the Madden-Julian Oscillation (MJO). 

Quantifying how the flood risk in a region changes over time in response to climate 

conditions can improve risk characterization, insurance pricing and actuarial management. 

This white paper summarizes some of the work from the Columbia Global Flood 

Initiative. Innovative statistical methods for local and global flood risk estimation through the 

integration of key topography, climate data and spatial concordance were developed to provide 

a robust platform for the best possible risk estimates for actuarial and portfolio analysis. The 

Columbia Global Flood Tool consists of two technological innovations that can be adopted both 

in data abundant locations and in data sparse locations for assessing the flood potential and 

developing the regional risk estimates, as well as their evolution in time. A Hierarchical 

Bayesian Methodology is developed for multi-site estimation of flood risk under both stationary 

and non-stationary assumptions. This model can be used directly with streamflow in data 

abundant regions. Parallel to this model, we have developed a framework that embeds several 

statistical and physical modeling techniques from rainfall to runoff to estimate the flood risk in a 

region. This framework can be used in data sparse regions through globally available climate 

data. We have demonstrated the application of this Tool for a suite of 6 regions across the world 

where recent mega-floods have led to concerns, as part of a project with AIG. 
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Grand Challenges 
Recent mega-floods in Thailand, Pakistan, Queensland, the Midwestern US, India, 

China and Europe have led to heightened interest in risk assessment for floods. In some cases, 

such as Thailand and the Mississippi River, the efficacy of the flood control projects and their 

operation was called into question. Areas that were not previously considered a major risk had 

industrial infrastructure inundated by flooding, leading to substantial global supply chain effects 

in addition to direct loss of use of assets1. It is interesting to note that several of these floods 

were associated with multiple, recurrent events that led to flooding durations of 30 to 170 days. 

The 2011 Thailand flood was “rated” as a 30-year event based on the peak flow, but the 

sequence of tropical cyclones and rainfall events over the 116 days of flooding appears to be 

unprecedented. The risk of such events has not been formally considered in past analyses. A 
lesson that emerges is that flood risk analysis may need to consider the risk of different 
types of floods, rather than just be indexed to the instantaneous peak flow in a river, 
associated with a single extreme rainfall event. 

Meteorologists have considered intensity-duration-frequency (IDF) curves for extreme 

rainfall in a region for different durations. Typically storm durations from 1 hour to 72 hours are 

considered, and the rainfall totals associated with each duration for specified return periods are 

estimated. Hydrologists and transportation system managers often use the IDF curves together 

with assumptions as to antecedent soil moisture conditions (AMC) from prior rainfall in a 

watershed to assess or update flood risk from an event. Moreover, this approach assumes a 

stationary climate and typically a single curve interpolated from rain gauges in the area is 

applied for the catchment. The extreme events are assumed to be time and space independent. 

There is little to no literature on how to estimate and link the probability of persistent 
rainfall over 30 to 120 days that leads to high AMC in the region, their spatial dependence 
structure, and the probability of an extreme rainfall event over a few days, as a basis for 
projecting the risk of mega-floods in a region. 

It is now understood that the events related to persistent and recurrent rainfall (e.g., due 

to repeated waves of tropical moisture every 5 to 7 days in the Ohio river basin in 2011, or due 

to repeated tropical cyclones and rainfall in Thailand and Queensland in 2011), appear to 

correspond to the persistence of specific global climate patterns, that may be identifiable from 

1 Haraguchi, M., & Lall, U. (2015). Flood risks and impacts: A case study of Thailand’s floods in 2011 and research 
questions for supply chain decision making. International Journal of Disaster Risk Reduction, 14, 256-272. 
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global, historical data fields, and also from climate models that project future conditions2. An 
exploration of these patterns and their predictability has great promise for improving 
estimates of mega-floods through the development of a joint probability density for both 
the rain associated with the AMC and the event precipitation attributes. Of course, linking 

these to the nature of atmospheric and ocean circulation mechanisms that control these 

precipitation systems will be the only credible way to generate and verify projections under 

future climate changes. A central question is how the precipitation mechanisms may change in 

the future, and since the current climate models do a poor job of reproducing precipitation 

statistics, focusing on mechanism change is an important goal for credible projections. 

Ultimately, one is interested in assessing flood risk for specific assets at risk within the 

region for which policies are to be written, or whose disruption (e.g., transportation networks) 

would result in business disruption or loss of use claims. Ideally, one would like to be able to 

geo-reference a location of interest and have a ready look up table for the potential exposure of 

flood risk at that location. Factors that complicate such an assessment include the need to 

model the hydraulics of flow in river channels and through a developed urban area; the 

operation and condition of flood control infrastructure; and data limitations add to these factors. 

In the US, Australia and in Europe, 100-year and 500-year flood plain zoning maps that 

effectively place a particular property in a specific risk category are developed. However, 

despite the large expense of developing these maps, their accuracy at the property level is low 

(e.g., uncertainty estimates on the FEMA maps often lead to non-discrimination between the 

100- and 500-year floodplains as marked), there is no consideration of changing climate factors 

or of inundation duration, and the hydraulic analyses are typically linked to a single steady-state 

flow. The re-rating of Sacramento’s flood protection to be only at the 77-year level in early 2000 

by FEMA, relative to the 500-year level protection estimated at the time of design in the 1960s, 

reflects the dramatic changes in assessed risk that can occur due to changes in the baseline 

climate. Assessing how the operation of the reservoir and dike system will mitigate this risk is 

also very difficult for an outsider. Given these concerns, how a global flood risk product 
should best approach local risk estimation and refinement to those conditions emerges 
as a challenge. 

2 Nakamura, J., Lall, U., Kushnir, Y., Robertson, A. W., & Seager, R. (2013). Dynamical structure of extreme floods in 
the US Midwest and the United Kingdom. Journal of Hydrometeorology, 14(2), 485-504. 
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The Global Flood Risk Estimation Process 

Data Fusion, 
Analytics, 

and Return 
period 

Estimation 

Climate 
Precursor 

Flood 
Typology 

Portfolio Risk 
Analysis 

Columbia’s Global Flood Initiative Innovations 
We have developed a stochastic modeling strategy that integrates the above 

factors into a comprehensive risk assessment tool with uncertainty estimation and the 
capacity to simulate risk under changing climate conditions, preserve spatial correlation 
for portfolio risk analysis, and to perform automatic updates as additional local or global 
information becomes available. 

The general conceptual structure for a climate informed global/local flood risk 

assessment is illustrated in Figure 1. 
Mega-Flood Dynamics Causal Chain Inference Chain 

The approach breaks significantly 

from any existing product in making 

explicit the dependence of the 

likelihood or frequency and intensity 

of extreme regional floods on a 

causal chain of ocean-atmosphere 

processes whose slow variation and 

regime-like changes translate into 

significant and persistent changes in 

the probability of major floods in 

large regions of the world. For 

instance, the same climate 
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conditions led to nearly concurrent drought/heat wave in Russia and floods in Pakistan and 

Western China. Similarly, the Ohio River, Missouri River and Upper Mississippi River floods 

and associated spring/summer tornadoes in 2011 were marked by the February-June seasonal 

evolution of the same persistent climate pattern. The moisture for these large floods was 

funneled into the region of interest through specific, anomalous circulation patterns. An 

understanding and mapping of these factors into a dynamic risk framework is important for 

establishing a process by which flood risk could be systematically updated reflecting changing 

climate conditions, whether due to human influence, or as part of the natural cycles of climate 

variation. Dynamic risk implies that in addition to a nominal return period for a flood event in a 

region, one also estimates the probability of occurrence of such an event over a specified future 

period (season, year or decade). Given a variety of tools to map the causal chain illustrated, the 

question becomes how best to use the data for probabilistic inference. 

The overall framework we built is a two-way technological capability that can be 

implemented both in data-abundant or data-sparse locations. Most traditional approaches for 

flood risk estimation start with at-site rainfall or streamflow records and simulate a relatively 

short history from which peak flows in a river are established and their return period is 

estimated. Our approach is quite different and is based on (a) a Hierarchical Bayesian modeling 

approach for multi-site estimation of flood risk and (b) a causal probabilistic network, with 

nonparametric method of statistical rainfall modeling integrated with a physically-based runoff 

modeling system. 

Many 
Flow 
Gauges 
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Hierarchical Bayesian Framework for Flood Estimation: Traditionally, extreme value 

analysis pursues the estimation of a relationship between the process variable (either annual 

maximum series or peak of a threshold) and its probability of exceedance. Regionalization has 

typically been based on classical statistics where parameters are mostly assumed stationary in 

time and space and their associated uncertainties are usually neglected or based on normality 

assumption. Typical models include Gumbel distribution3 or more recently the Generalized 

Extreme Value (GEV) distribution4. While such approaches address a specific component of the 

modeling extreme values of a place-based issues, we depart from these to develop a unified 

modeling capability that can address the multiple layers of complexity of fitting appropriate 

multivariate data distributions, estimating the model parameter uncertainties, spatial extensions 

and aggregation and temporal trends using Hierarchical Bayesian Models. The model and 

parameter uncertainties and trends can be fully incorporated into outputs and information from 

different sources (stations, locations) can be used to shrink those uncertainties and improve the 

model reliability. 

Causal Network Framework for Flood Estimation: Many river basins/watersheds are either 

ungaged or have very sparse streamflow gaging networks. There are substantial differences for 

rainfall-runoff characteristics as a function of the degree of urbanization, the channel 

geomorphology, drainage density and channel sinuosity, and the associated pattern of 

topographic relief. Typical hydraulic and hydrologic models attempt to parameterize these 

features case by case, and often these parameters are either not calibrated (referred to similar 

settings) or calibrated at a few locations and then extrapolated. In a statistical flood risk 

modeling context, given a spatio-temporal rainfall field, it should be possible to evaluate the 

potential inundation statistics conditional on the broadly available data on surface conditions, as 

represented in the digital elevation and surface cover fields. We developed such a model that 

permits multi-scale regionalization of flood potential in a river basin using local information, 

given stochastic realizations of potential rainfall sequences. This consists of synthetic hydrologic 

modeling over the watershed attribute class to derive the appropriate probability distributions. 

Historical inundation maps, where available for the events considered, will provide a basis for 

both model calibration/validation, and for developing a “risk envelope” for the assets of interest 

in the river basin. Any analysis involving asset risk will be dependent on the quality and quantity 

3 Hershfield, D. M., 1961: Rainfall frequency atlas for the United States for durations from 30 minutes to 24 hours and 
return periods from 1 to 100 years. Technical Paper 40, U.S. Weather Bureau, Washington, D.C. 
4 Katz RW, Parlange MB, Naveau P., 2002: Statistics of extremes in hydrology. Adv Water Resour 25(8–12):1287– 
1304. doi: 10.1016/S0309-1708(02)00056-8. 
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of data that Customer provides the Vendor. We now have a global hydrologic model 
developed at multiple scales that can be used to support these analyses. 

Global Flood Toolkit 
We piloted the toolkit at six sites to develop and test selected methods for subsequent 

global application for river flooding. Instead of just producing a 100-year flood map, as is 

traditionally done, the goal was to also to estimate the uncertainty in the return period at a 

location, to link climate predictors to the extreme floods, to look at the spatial and temporal 

structure of floods, and their causes. 

Specific tasks were as follows: 
1) We tested the feasibility of using a chain of weather simulations to rainfall-runoff models 

to inundation models using globally available data sources to establish synthetic series 

of potential flooding at any location of interest. 

2) We tested the feasibility of using Bayesian Statistical Models with observed time series 

as well as model-generated series to estimate return periods at the sites of interest and 

also their potential variation given some climate indicators. 

3) We considered a broader set of flood measures than is usually done so that subsequent 

analyses of flood losses can be better informed by attributes beyond the peak 

flow/inundation level. 

4) We developed exploratory work on the global spatial coincidence in extreme 

rainfall/flood events and its implication for portfolio risk. 

A summary of some of the key lessons and challenges are as follows: 
1. A multivariate daily weather (Precipitation, Tmin, Tmax, Wind) generator that can 

preserve space and time dependence of these variables was developed and 

demonstrated successfully at all sites. It can condition on a few selected climate 

variables. The data used were gridded global products, and also re-analysis products 

from climate models. The model is invariant to the spatial resolution of the data, and can 

be applied at river basin scales. 

a. Application for future climate scenarios (climate change as well as oscillatory 

components such as ENSO, and next 5-to-10-year scenarios) with downscaling 

from appropriate variables is feasible, but needs to be developed and tested. 

b. Potential applications to heat and wind indices are possible, but have not been 

tested. 
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c. Linkage with the Bayesian model and trend analyses for scenario development 

still needs to be done. 

2. The VIC model, which is used extensively for continental and global hydrologic 

modeling, was selected and modified to include 1-d kinematic wave routing to test its 

capabilities for producing reasonable flood flow simulations. The results varied by region 

of application, and did not lead to a clear understanding of where and when this 

approach linked to the weather generator will work well. We are now considering deep 

learning and transfer learning models as an alternative to VIC. 

a. Global datasets were available to constrain VIC parameters from past work, and 

these were used. In terms of future applications this is a plus, as it provides a 

prior data set that can be readily used. 

b. VIC is a continuous simulation model, unlike HEC-RAS or other event-based 

models, and the hope was that this will allow us to better model complex flooding 

events that have long duration and are composed of multiple events, such as the 

Thailand, Indus, Queensland and Mississippi floods. 

c. No uncertainty analysis on VIC was done formally, and there was limited effort at 

calibration of VIC parameters to sites. DEM’s and rainfall at different resolutions 

were explored and the change in results was noted. Sensitivity to model 

resolution and its impact in different settings requires formal exploration. 

d. Simple inundation models consistent with those used in other global flood 

modeling efforts were implemented with mixed results, and a formal inundation 

model from AIG was finally used. This required significant calibration effort on a 

site-by-site basis. 

e. Automatic calibration methods need to be implemented for VIC or an alternate 

rainfall-runoff model (which could be event based), conditional on “features” of 

the watershed for which data is readily available. This algorithm would also need 

to provide an automatic sensitivity and uncertainty analysis. 

f. Dams and levees were neglected for proof of concept of the modeling chain. This 

limits the modeling capabilities in many regions of interest, and the role of dams 

and levees needs to be considered in the rainfall-runoff model, whether it is 

physics based or using deep learning. 

3. The Hierarchical Bayesian Modeling was restricted to peak annual flow series at a set of 

streamflow gauges or nodes where VIC outputs are monitored, and focused on 

demonstrating whether scaling related to drainage area and selected climate predictors 
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can be used to develop an appropriate multivariate flood return period prediction system 

for a region. 

a. For Brazil locations, both nested in a river basin and across basins, skill in 

prediction was demonstrated and inundation maps were provided. 

b. For other locations (USA, Thailand, Germany), the approach was able to reduce 

the uncertainty in flood quantile estimates over traditional methods (local and 

regional) of flood frequency analysis. The use of climate information (observed or 

from GCM outputs) for non-stationary prediction of flood quantiles and risk was 

not fully explored for these locations. The limited exploration did not demonstrate 

significant predictive utility from the linear models used. 

c. Integration with the weather generator-rainfall runoff model needs to be explored. 

d. Extension to flood volume and duration needs to be done. 

e. Regionalization strategy considering homogeneity of causal mechanism and 

associated scaling or model structure needs to be developed as a semi-

automatic algorithm for global application. 

4. Exploratory work was done on spatial concordance and scaling for extreme rainfall 

events to understand the potential for a portfolio risk product. 

a. As the duration of an event increases, the potential for multiple events with large 

spatially contiguous area to happen globally in the same season or year 

increases. 

b. Scaling relations for rainfall duration, amount and area are found suggesting 

possible applications to portfolio risk estimation if indexed directly to rain. Similar 

explorations with streamflow duration and area flooded were conducted and 

show similar results. 

c. Linkage to AIG assets still needs to be done, and the toolbox for doing this using 

rainfall is now available. 

d. Multi-hazard spatial analyses especially for climate driven phenomena – e.g., 

ENSO – can be developed as an extension linked directly to AIG assets 

Future Directions 
Global Climate Predictors for Large Scale Floods 

The mechanisms for floods can vary, even in a given location. The spatial and temporal 

structure of rainfall associated with an extreme flood may depend on the antecedent 

atmospheric processes including prior events that deposited snow or rain. To develop a climate 
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informed strategy, we need to identify the main mechanisms associated with the extreme floods 

and how the frequency, intensity and spatial expression of these mechanisms is manifest. This 

is important for credible forecasts of the potential for future extreme floods, conditional on key 

climate variables. These atmospheric processes can be classified depending on the latitude, 

continentality, season and other factors, such that a global strategy for climate prototyping in the 

flood context results. Our goal here is to make progress towards a strategy for climate-based 

flood return periods, and as a byproduct inform the risk of extreme climate events that are 

associated with extreme rainfall, wind and flooding. Thus, mechanisms that lead to tornadoes, 

rainfall and floods or extreme wind and rain can be studied in a unified way conditional on 

climate. Initial work in this direction has shown significant promise at lead times of one to 3 

months. 

For mega-floods, we believe that tropical moisture delivery into the region of interest is 

important, since in most cases local moisture sources are not large enough to deliver the 

sustained moisture needed for the associated rainfall event. Thus, the identification and 

modeling of features such as atmospheric rivers and tropical cyclones associated with the flood 

events is important. During the first phase, we focused on developing the links and algorithms 

that can use the identified climate precursors as inputs. In the second phase, we propose to 

develop a comprehensive database of the global climate predictors that modulate the large-

scale floods. There are several well identified climate modes that operate from intra-seasonal 

(Madden-Julian Oscillation) to multi-decadal scales (Atlantic Multidecadal Oscillation) that have 

been shown to influence the seasonal and longer-term expression of the key circulation patterns 

prevailing worldwide. Climatic indices of these modes have been developed and recorded both 

for global factors (e.g., ENSO: NINO3.4 index), hemispheric (e.g., MJO indices), and regional 

(e.g., the EAWR pattern over Europe). We are now exploring machine learning methods for 

automatic identification of global and regional prediction schemes. Key steps involved in this 

process are the following: 

a) Break down rain/flood events by the type of mechanism. 

b) For each mechanism, e.g., frontal storm (or rain on snow), we would seek to 

parameterize the key attributes, e.g., speed, direction, pressure drop and the central 

pressure, as a joint distribution and explore how these interact with basin topography to 

determine the impact on flows and the convergence in the drainage network. 

c) Consequently, it would be possible to build time series simulation models of these 

indices to represent the inter-annual and decadal variability and how these modes 

interact with within season variability. We would develop a space-time wavelet-based 
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model to provide global predictors in a given latitude band using appropriate variables 

from GCM simulations (re-analysis or scenarios). 

d) Explore the simulations from GCMs or machine learning models for seasonal forecasts 

and also for the next 5-10 years to see if certain models can do a good job of simulating 

the key mechanisms identified and link this to the stochastic simulation models we 

develop. 

Stochastic Modelling for Flood Risk Estimation 
In a statistical flood risk modeling context, given a spatio-temporal rainfall field, it should be 

possible to evaluate the potential inundation statistics conditional on the broadly available data 

on surface conditions, as represented in the digital elevation and surface cover fields. We 

developed such a model during the pilot phase that permits multi-scale regionalization of flood 

potential in a river basin using local information, given stochastic realizations of potential rainfall 

sequences. The stochastic rainfall scenarios reproduce well, the key attributes with appropriate 

intensity-duration-frequency and spatial expression, hence provided a basis for conditioning 

basin hydrologic attributes for flood risk assessment. For the future, we propose the extension 

of the Stochastic Model to generate near-term (5 – 10 years) Climate Scenarios and Forecasts 

for a dynamically updating Regional Flood Risk Scoring. 

Global Scale 
Leveraged Product from Phase I 

The current weather generator is tailored to take as inputs, the principal components of the 

atmospheric pressure fields for simulating climate informed rainfall, temperature and wind 

scenarios for any given location globally. Simulations of the climate variables from the previous 

task relevant to each mechanism will be used to drive the previously developed models. 

Statistical Forecasts of Floods 

We propose to directly map the global climate predictors from the previous task for the region of 

interest, statistically to the flood risk. This way, if we know the state of current and projected 

indicator there is a quick early warning tool for season ahead risk in different parts of the world. 

Automatic Trend and Climate Sensitivity Identification for Extremes 

We propose to develop a Bayesian model for nonstationarity (predictors could be 

CO2/Temperature/Time, ENSO, PDO) using a multilevel pooling approach where the trend 

coefficients are partially pooled to single Normal distribution or mixture distribution to discover 

clustering in extremes, including possible covariance across locations and predictors5. 

5 Gelman, A., and J. Hill, 2007: Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge 
University Press. 
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Urban Floods 
Develop a general modeling framework for integrating multiple sources of information such as 

rain gauge data, radar information and climate scenarios into spatio-temporal fields for extreme 

rainfall events and simultaneous flood risk estimation. We are well placed to obtain high 

resolution radar and remote sensing data and explore the urban flood issues. It may be 

necessary to do event-based modeling rather than continuous modeling at the urban scale, 

linked to specific types of events with high resolution time and space data. Product focus will be 

on the simulation of blended radar-gauge rainfall fields at 15 min or hourly resolution using 

Bayesian model6. 

Uncertainty Analysis using Bayesian Approach 
The goal is to improve uncertainty analysis by both formally modeling the parameter 

uncertainties and reducing them using regional information, and to integrate across the different 

modeling streams. Some ideas we intend to explore are as follows: 

a) Extension of past work to directly consider precipitation attributes as well as GCM 

outputs (e.g., sea level pressure, wind field, rainfall forecasts, etc.) as predictors for the 

model based on scaling relationships. For instance, can we use 1, 3, 5, 30-day 

precipitation in each sub-basin as a predictor of the flood flow, duration and volume at 

the sub-basin outlet, and still explore the scaling relationships as part of it. Here, the 

model could be built using the VIC outputs of these variables, accounting for the bias 

and uncertainty in VIC simulations, or built directly from the rain and flow data or GCM 

rainfall forecasts. For the latter case, it could give us a way to predict at ungaged 

locations, where rain data is available. 

b) Focus directly on extremes and not modeling the full annual max flow distribution – i.e., 

consider a GPD style model rather than LN or GEV. Identify predictors associated with 

extremes regionally and then use them to predict the events. This would include 

prediction of the number of events to be expected above some threshold in a given year 

or season in a region. Possibly shift directly to a mixture model that uses different 

mechanisms inferred from atmospheric data, and then builds a hydrologic or statistical 

model for the terrain and infrastructure response. Pick all events of the mechanism that 

exceed some threshold and map those to flood flows, then normalize probabilities to 

annual. 

6 Rahill-Marier, B., Devineni, N., Lall, U., & Farnham, D. (2013, December). Multivariate Bayesian Models of Extreme 
Rainfall. In AGU Fall Meeting Abstracts (Vol. 2013, pp. H43N-05). 
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c) Extension to global scale -- can we parameterize the key basin attributes -- topography, 

drainage network density, soils etc. and see if we can build a model in a highly resolved 

area and apply to locations where the data on flow in particular is poor or non-existent -

the key here is to identify attributes that could work globally and are still dependent on 

climate so we could do climate informed simulations. 
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