
1. Introduction
Sub-seasonal to annual precipitation forecasts are of strong interest for hydrological and agricultural planning and 
outcomes. The El Niño Southern Oscillation (ENSO) is the strongest interannual signal in the climate system. 
It develops around the tropical Pacific Ocean and is the most important mode of global climate variability 
(McPhaden et al., 2006; Nigam & Sengupta, 2021). There is an extensive literature on the teleconnections of 
ENSO to regional precipitation including future predictability (Arcodia et al., 2020; Chapman et al., 2021; Dai & 
Wigley, 2000; Emerton et al., 2017; Henderson et al., 2020; Ropelewski & Halpert, 1987; Sun et al., 2015; Tseng 
et al., 2021; Van Oldenborgh & Burgers, 2005; Vicente-Serrano et al., 2011; Yan et al., 2021; Yang et al., 2021; 
Zhang et al., 2016).

Spatial patterns of sea surface temperature (SST) are key to each ENSO event's evolution and impacts. The 
NINO1.2 and NINO3.4 regions have been used most often for correlative teleconnection analyses, and also for 
benchmarking the performance of physics-based models in reproducing ENSO dynamics and the associated tele-
connections (Lenssen et al., 2020; Nigam & Sengupta, 2021). Recent ENSO events have exhibited strong anom-
alies in SST regions in the Central Tropical Pacific that are different from the traditional ones. Consequently, the 
teleconnections have also had a different flavor. Many studies have proposed using the principal components or 
contrasting different ENSO regions, instead of the well-known NINO3.4 index. In particular, the El Niño Modoki 
index (Ashok et al., 2007) uses empirical orthogonal functions of SST in the Pacific Ocean. Tang et al. (2018) 
summarized the current status of ENSO prediction models. They reviewed the progress in ENSO prediction/
predictability and the improvement in the theoretical study of the intrinsic predictability limit.

Abstract We present the first global precipitation predictability estimates corresponding to the recently 
discovered flavors of El Niño Southern Oscillation (ENSO) that are encoded in the hidden states of Tropical 
Pacific sea surface temperatures identified using a non-homogeneous hidden Markov model. For each 
calendar month and for each hidden state, we assess future precipitation predictability through the conditional 
standardized anomaly of the average and the standard deviation of monthly precipitation, at 1, 3, 6, 9, and 
12 months lead times. We find statistically significant potential predictive skill for key regions for each hidden 
state and calendar month, even for 12-months in the future. We apply the algorithm sequentially over the period 
of record to identify regions that can be consistently predicted for different lead times and calendar months. The 
cross-validated correlation skill is demonstrably superior to that of regression with an ENSO index used in the 
same way.

Plain Language Summary El Niño Southern Oscillation (ENSO) information is routinely used 
by hydrologists, agriculturalists and others as a useful prognosticator of upcoming precipitation. Since the 
characterization of ENSO has recently been broadened to consider different “flavors,” the NINO3.4 correlations 
used by many people may not be the most informative. Our machine learning model identified five hidden 
states of the tropical Pacific sea surface temperatures that correspond to the different ENSO flavors. We explore 
how future monthly precipitation may be predictable knowing which hidden state is currently identified and 
show that this leads to a higher predictability for up to almost a year in the future for many more calendar 
months in more regions of the world than NINO3.4 correlations.
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Machine learning methods have been applied for the simulation and forecast of ENSO. Lima et  al.  (2009) 
demonstrated ENSO predictability beyond 1 year using Maximum Variance Unfolding with SST and thermo-
cline data. Ham et  al.  (2019) provided skillful ENSO forecasts for lead times up to 18 months, relying on a 
convolutional neural network with SST and heat content as predictors. Rojo-Hernández et al. (2020) employed 
a non-homogeneous hidden Markov model (NHMM) to simulate and predict the spatiotemporal evolution of 
monthly tropical Pacific SST. Five SST hidden states, whose spatial patterns are similar to the so-called ENSO 
flavors, were identified using NHMM. This classification of the SST dynamics allows an exploration of the 
spatial patterns of SST and other meteorological variables associated with each hidden state, and their temporal 
and Markovian evolution. The SST hidden states can then be employed as concurrent or leading predictors for 
other variables (e.g., for regional precipitation and temperature), in addition to insights as to the ENSO flavors 
and their prediction. In this paper, we explore the diagnostic connection of the hidden states with the space and 
time expression of climate variables, globally or regionally, for the concurrent month or for a future month.

The potential predictability of gridded monthly precipitation globally using the SST hidden state, at lead times of 
1–12 months starting in each calendar month, is of primary interest. We also explore the corresponding atmos-
pheric pressure fields in the same way to assess whether there is physical consistency between the indicated 
precipitation and atmospheric circulation. The data and methods used are outlined in the next section, followed 
by an overview of the results at specific lead times. Finally, a discussion of the implications and future directions 
concludes the paper.

2. Data and Methods
2.1. Data

The global region discarding the polar regions (180°W–180°E, 65°S–75°N) is selected as the study area. The 
monthly precipitation and 700 hpa geopotential height fields are obtained for 1856–2015 from the NOAA-CIRES-
DOE Twentieth Century Reanalysis (V3) data set (https://psl.noaa.gov/data/gridded/data.20thC_ReanV3.html). 
The standardized anomalies of precipitation at time t, denoted by 𝐴𝐴 pa𝑡𝑡 , were calculated for each grid cell as

pa𝑡𝑡 =
𝑝𝑝𝑡𝑡 − 𝑝𝑝𝑖𝑖(𝑡𝑡)

sp𝑖𝑖(𝑡𝑡)
 (1)

where 𝐴𝐴 𝐴𝐴𝑡𝑡 is the observed monthly precipitation at time t, 𝐴𝐴 𝑝𝑝𝑖𝑖(𝑡𝑡) , and 𝐴𝐴 sp𝑖𝑖(𝑡𝑡) are the mean and standard deviation of 
monthly precipitation for the calendar month 𝐴𝐴 𝐴𝐴(𝑡𝑡) associated with month t.

The SST anomalies used are the monthly Kaplan Extended SST V2 (Kaplan et al.,1997) from 1856 to 2015 
covering the region 15°S–15°N and 150°E−80°W. The NION3.4 index was downloaded from NOAA (https://
psl.noaa.gov/gcos_wgsp/Timeseries/Nino34/).

2.2. Monthly Precipitation Predictability Given the Hidden SST States Information

Through the analysis using the NHMM (see Holsclaw et al., 2017; Rojo-Hernandez et al., 2020, and Supporting 
Information S1 for details of the construction of NHMM and parameter estimation), five hidden states (Figure S1 
in Supporting Information S1) are identified. Hidden states one–five are similar to the classical La Nina pattern, 
mild La Nina pattern, neutral pattern, Modoki ENSO pattern and classical El Niño pattern, respectively. The 
spatial pattern of the global SST for each Pacific SST hidden state for April is shown in Figure S2 of Supporting 
Information S1 as an example.

Our first test is to see whether knowledge of the Pacific SST hidden state in a given calendar month is informative 
about the probability distribution of precipitation m months into the future. We take the following approach. For 
each calendar month i(t), we identify the associated hidden state k, and then compute the mean and standard devi-
ation of the precipitation m months forward corresponding to that hidden state. Thus, for each calendar month, 
the predicted teleconnection to the hidden state is defined through the mean and standard deviation of the target 
variable of interest for the future month. As an example, January 2016 corresponds to hidden state five. In this 
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case, our “forecasts” for February/July 2016 would be the mean and standard deviation of February/July precip-
itation for all years in which January was classified as hidden state five. Symbolically, we have the forecast as:

pf𝑡𝑡+𝑚𝑚 =
{

𝑝𝑝𝑖𝑖(𝑡𝑡+𝑚𝑚),𝑘𝑘(𝑡𝑡), sp𝑖𝑖(𝑡𝑡+𝑚𝑚),𝑘𝑘(𝑡𝑡)
}

 (2)

where 𝐴𝐴 pf𝑡𝑡+𝑚𝑚 is the “forecast” for month t + m given that the current month is t, 𝐴𝐴 𝑝𝑝𝑖𝑖(𝑡𝑡+𝑚𝑚),𝑘𝑘(𝑡𝑡) , and 𝐴𝐴 sp𝑖𝑖(𝑡𝑡+𝑚𝑚),𝑘𝑘(𝑡𝑡) are the 
mean and standard deviation of precipitation for month t + m given that the current calendar month is i(t), and 
the current SST hidden state is k(t). We consider m varying from 0 (i.e., concurrent) to 12 in the results presented 
here. This approach is applied to all the grid cells for the re-analysis given the information on the SST hidden state 
for each month t. We also performed a similar computation for geopotential height and temperature to check for 
the physical consistency of the predicted response for precipitation given the SST hidden state.

2.3. Significance Testing Using a Bootstrap

Once we have calculated the “forecasts” 𝐴𝐴 pf𝑡𝑡+𝑚𝑚 for each calendar month i(t), each hidden state k(t) and lead time m 
(0, 1, 3, 6, 9, 12), we check whether these forecasted means and standard deviations are statistically different from 
what we expected if we knew nothing about the hidden states. Between 1856 and 2015, we have 160 observa-
tions for each calendar month. We bootstrap a sample with 160 observations with replacement for each calendar 
month and randomly assign bootstrapped observations into five sub-samples belonging to states one to five with 
sample sizes corresponding to those for the hidden state Viterbi sequence. For each sub-sample, we calculate the 
mean and standard deviation of the precipitation for the future month in the same way as for the original data. 
To get the approximate distribution of the mean and standard deviations, we generate 1,000 bootstrap random 
samples and get 1,000 means and standard deviations for each hidden state and each calendar month. Note that 
each such sample is of the same size as the number of samples for a hidden state for that calendar month, but it is 
randomly drawn from any year for that calendar month, without knowledge of the hidden state. This assures that 
the random, climatological sample from which the mean and standard deviation of precipitation are computed 
have the same sample size and hence the appropriate uncertainty distribution as the sample for a specific hidden 
state and calendar month. Next, we compare the forecasted mean and standard deviation with the bootstrapped 
1,000 means and standard deviations and calculate the percentile of the forecasted mean and standard deviation 
relative to the corresponding random distribution of the bootstrapped 1,000 means and standard deviations.

Continuing with the example, consider that the hidden state for January 2016 is 5. We are interested in the precip-
itation for March 2016. Then the mean and standard deviation of precipitation for all March such that the January 
hidden state is five are computed. The percentiles associated with these values relative to bootstrapped March 
mean and standard deviations of precipitation for the sample size for each random draw equal to the frequency 
of hidden state five occurring in January are assessed. The percentile tells us how unusual the calculated fore-
casted mean and standard deviation is compared with what one could get by chance. For example, suppose the 
forecasted statistic has a percentile of 0.01 or 0.99. In that case, one could say that at the 1% significance level, 
the forecasted  statistic is different from what may be expected by chance.

This process is applied to each statistic for each grid cell, and the potential predictability of monthly precipitation 
can be assessed. Of interest are situations where the mean of the forecasted precipitation for a given hidden state 
may be unusually high or unusually low for a given calendar month and forecast horizon. If at the same time, the 
corresponding standard deviation is low, high predictability of the future teleconnection is indicated. A situation 
where the standard deviation is very high may also be of interest since it indicates a situation when there is high 
uncertainty/low predictability as to the outcome, even if on average an extreme response is indicated.

2.4. Performance of a Continuously Applied m Month Ahead Monthly Precipitation Forecast Using the 
Pacific SST Hidden State Information

The question explored in this section is whether the conditional “forecast” of global precipitation using the hidden 
SST states for a given lead time and calendar month, provides more information that using the usual NINO3.4 
- precipitation correlations that are commonly used. If the answer is yes, then an additional diagnostic for the tele-
connection is provided as a direct comparison to a commonly used current method. To address this question, we 
consider a continuous application of the precipitation conditional mean as a “forecast” based on the SST hidden 
states applied sequentially for each month over the historical record for each grid. To ensure that the predictions 
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are independent of the sample used to define the conditional mean precipitation for a given month, lead time and 
hidden state, leave-one-out cross-validation procedures were carried out for both forecasts using hidden states 
and NINO3.4. Once this is done, we can compute the correlation between the “forecasted out of sample” and 
observed precipitation for that lead time for each grid, and this can then be compared with the correlation of the 
NINO3.4 for the current month with the m month ahead precipitation at the same location.

2.4.1. Continuous m Month Ahead Forecast Using Hidden States Information

We applied the cross-validated forecast procedure described in Section 2.2 sequentially for each month and each 
grid cell. A correlation map of the forecast against observations was then generated for each lead time across all 
months of record. Note that since no predictive model was calibrated using the precipitation data, this is an out 
of sample skill assessment.

As an example, consider that the hidden state of April 1950 is state two. To forecast the May 1950 precipitation, 
the mean values were calculated based on the May precipitation for all years whose April hidden state is state 
two, excluding data from May 1950. This algorithm is applied sequentially for each May from May 1870 to May 
2015 (146 samples), based on the identified state for April. Then we calculate the Pearson correlation between 
the forecast precipitation anomaly time series and the observed precipitation anomaly series for each location and 
each calendar month. For example, suppose we would like to assess the 1-month ahead forecast skill for May. We 
compute the Pearson correlation between forecasted precipitation in May using the hidden state of April and the 
observed precipitation in May for the whole period.

2.4.2. Comparison With Conditioning on the NINO3.4 Index

As a simple test to see if we learn anything more than would be indicated by using a cross-validated regression 
with the NINO3.4 index, we compare our results with the correlation of the observed precipitation with the 
cross-validated regression forecast of precipitation for each grid box from a m month lagged NINO3.4 index.

3. Results
3.1. Monthly Precipitation Predictability Using the Hidden ENSO States

The 9-month ahead “forecast” of precipitation anomaly in May is shown in Figure 1. Conditioning on hidden 
state five, it is seen that for East Canada, East Europe, Central China, the Korean peninsula etc., the standard 
deviation (0.5–1) is low, while the mean is high for specific hidden states, which means we are very confident 
that the May precipitation may be very high in these regions. For the Southwest U.S. and Middle East, both the 
mean and standard deviation (0–0.75) are low, so we are confident that the precipitation is expected to be low in 
these regions. On the contrary, both the mean and standard deviation are high for Northwest India (larger than 
1.75), Southeast China, Western Europe etc., which means the variation across years in these regions is high, 
even conditional on the SST hidden state. The results for other lead times can be found in the supplement (https://
github.com/Ivyzhangmj/Mengjie_Global-Predictability-for-Monthly-Precipitation-Revealed-by-SST_Support-
ing-Information.git). As may be expected, the strength of the teleconnection decays by lead time, and varies by 
calendar month. We use 9-month ahead teleconnections for May for our examples in the main body of the paper to 
highlight a lead time that is not expected to have skill and also crosses the spring barrier of ENSO predictability.

Given the hidden state and a calendar month, we can look at the “forecast” of any other climate variable (e.g., 
temperature or atmospheric circulation variables) in the same way. The atmospheric circulation is of particular 
interest to help establish the physical pathways of causality associated with the precipitation forecast. To demon-
strate this, we present the spatial maps of predicted geopotential height of May using April (1 month) Pacific 
Hidden states in the supplement, and note that the directional changes are consistent with the directional changes 
one would expect for precipitation in most cases, reinforcing the physical interpretability of the results.

3.2. Significance Test

To see if the anomalies in the conditional means and standard deviations are statistically different from what one 
would get from a random distribution without the hidden state's information, we constructed a bootstrap test. 
Figure 2 displays the significance test results of monthly mean and standard deviation of precipitation anomaly 
in May for 9-month ahead “forecast.” In Figure 2, 0.1/0.9 means the “forecasted” statistic is below/above the 
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10th/90th percentile of the random distribution of 1,000 bootstrapped means or standard deviations. For the pres-
entation, the percentiles are classified into three categories, which are beyond 90th or 10th percentile (category 1, 
C1), 20th/80th–10th/90th percentile (category 2, C2), and 20th–80th percentile (category 3, C3).

The forecast results are expected to be helpful based on the following combination of the mean and standard 
deviation categories:

•  Mean > 90th percentile (C1), with standard deviation < 10th percentile (C1).
•  Mean > 90th percentile (C1), with standard 10th < standard deviation < 20th percentile (C2).
•  80th < mean < 90th percentile (C2), with 10th < standard deviation < 20th percentile (C2).
•  Mean > 90th percentile (C1), with 80th < standard deviation < 90th percentile (C2).
•  Mean < 10th percentile (C1), with standard deviation < 10th percentile (C1).

Taking the 9-month ahead forecast using hidden state five as an example (Figure 2), we note that for some areas 
in East Europe, Central China, and Indonesia, both the mean and standard deviation meet the criteria for C1. This 
strongly supports that hidden state five is associated with significantly higher monthly precipitation for these 
regions at 9-months lead time. Similarly, we are more confident that the conditional precipitation is low in the 
Central U.S. On the contrary, the variation across years is high in North Germany, Spain, Southeast China etc., 
where the mean meets C1 criteria but the standard deviation falls into the C2 category. It should also be noted that 
the results for East Australia and the Korean peninsula are not as confident either since the percentile of mean is 
in C1 while the percentile of the standard deviation is in C3.

Figure 3 displays the regions with high confidence high or low precipitation forecasts using the five hidden states 
for 9-month lead time. Note that “high confidence” is defined as forecasts with a low standard deviation (C1 or 
C2) and a forecast mean that is greater than the 80th/90th percentile or less than the 10th/20th percentile, and 
we are confident that the precipitation is high or low in that area. The results for other lead times can be found in 
the supplement. We noticed that the strong ENSO teleconnections indicated in our monthly analysis often vary 

Figure 1. Monthly mean (left panel) and standard deviation (std) (right panel) of precipitation anomaly forecast in May using the Pacific hidden states in last August 
for 9-month ahead teleconnection.
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spatially by calendar month. This is to be expected given the seasonal variations in the Intertropical Convergence 
Zone and the jet stream dynamics that influence monsoonal dynamics as well as tropical moisture exports to the 
mid-latitudes and the position and strength of frontal and cyclonic systems. Thus, contrary to the typical practice 
of seasonal aggregation with moving season boundaries, we believe that the monthly analysis is more informa-
tive  of the underlying dynamics of the system, and therefore better informs the sub-season to season trajectory 
that is of interest.

3.3. Continuous Monthly Resolution Precipitation Forecast for the Full Record

There is a vast literature on the correlation between seasonal precipitation and climate indices. However, very few 
focus directly on monthly precipitation. In this section, we report the correlation of 1-, 3-, 6-, 9-, and 12-month 
ahead continuous forecasts of monthly mean precipitation. To remind the reader, a 9-month ahead continuous 
“forecast” considers the hidden SST state assigned to month t, and assigns the conditional mean of precipitation 
for month t + 9 given that hidden state in month t. The same process is then repeated for each month (t + 9) 
of 1870–2015, and the correlation between the cross-validated predicted mean and the observed value is then 
computed using all forecasts of that lead time for each grid cell.

Figure 4 presents the 9-month ahead continuous forecast correlations for May over the period of 1870–2015. 
The correlations between observed and cross-validated forecasted precipitation in May for some places in North-
west China, West, and North Europe, Southern Canada, Southern Africa, Southern USA, West Australia etc., 
are above 0.3 (Figure 4a). To account for spatial autocorrelation among grids, Walker's test and false discovery 
rate (Wilks, 2006, 2016) were used to examine the field significance of correlations, and our results are field 
significant using both methods at the 0.05 global significance level (Figures  4a–4c). Figure  4c presents the 
difference between the correlation of observed and cross-validated forecast precipitation using hidden states and 
the correlation of observed and cross-validated forecast precipitation using NINO3.4. It is found that the forecast 
correlation using hidden states is significantly better than that using NINO3.4 for about 70% of land area. The 

Figure 2. Percentiles relative to bootstrapped distributions for monthly mean (left panel) and standard deviation (right panel) of precipitation anomaly forecast in May 
using the Pacific hidden states in the previous August for 9-month ahead teleconnection.
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forecast correlations for other months and lead times are provided in supplement, and we summarize the key 
features for each lead time and each season in Table S1 of Supporting Information S1. It should be mentioned 
that our monthly forecast correlations are higher compared with many studies typically analyzing the telecon-
nection between ENSO and regional seasonal aggregated precipitation (Lee, 2015; Pandey et al., 2020; Yoon & 
Leung, 2015), even for a 12-month lead time.

4. Summary and Discussion
Since we used precipitation re-analysis and retrospective SST data, what we presented is really an exercise in 
examining the potential predictability of the re-analysis data given the SST characterization and not a forward 
forecasting exercise. In this context, we find that potentially there is substantial predictability of monthly precipi-
tation at lead times up to 1 year in many global regions conditional on a classification of the tropical Pacific SST. 
The predictability is highly state dependent, varies by the calendar month used to choose the conditioning state, 
and as expected, it decreases with increasing lead time. The predictability is asymmetric between the La Niña 
and the El Niño states, suggesting that linear statistical models typically used with ENSO indices are not likely to 
be as effective as conditioning on the states identified by the NHMM. The approach taken here was to compute 
the first two moments of the conditional distribution of precipitation at each global location, given each hidden 
state and calendar month. Regions with promising predictability were identified based on the relative anomalies 
of the mean and standard deviation of precipitation given a hidden state. A more detailed conditional model for 
precipitation that also considers spatial correlation could be developed targeting these regions individually or 
collectively.

The findings suggest that an approach similar to the one in Rojo-Hernández, (2018) where the Pacific SST is 
modeled by a NHMM and the resulting monthly SST hidden states are used as predictors of the hidden states 
of a NHMM for daily precipitation in Colombia may be a promising building block for global precipitation 

Figure 3. Regions with high confidence high or low precipitation forecasts for 9-month lead time. The numbers 1–5 indicate which hidden states (1–5) contributes to 
the strength of the information.
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from monthly to annual time scales. We have considered a coupled, multilevel NHMM where regional or global 
daily precipitation could be modeled conditionally on global SST, with a simultaneous, Bayesian selection of 
model parameters and uncertainty characterization. However, the associated computational requirements for 
model fitting and testing at the global scale proved to be formidable. Consequently, we restricted ourselves to the 
experiment reported here which is computationally inexpensive, as a proof of concept of the idea that the SST 
hidden states from a NHMM or similar model that classifies SST dynamics, could be a useful building block for 
a predictive model.

Our future work will focus on addressing the computational issues with the multi-level global machine learning 
model for SST and precipitation, as well as explore some of the direct modeling of the conditional precipitation 
and temperature fields given the SST hidden states. We intend to explore emerging deep learning methods in 
addition to the NHMM for the purpose.

Data Availability Statement
NOAA-CIRES-DOE Twentieth Century Reanalysis (V3) data set used in this study can be accessed from https://
psl.noaa.gov/data/gridded/data.20thC_ReanV3.html; The SST anomaly data extracted from the monthly Kaplan 
Extended SST V2 data set is from https://www.psl.noaa.gov/data/gridded/data.kaplan_sst.html; The NINO3.4 
index data is available at https://psl.noaa.gov/gcos_wgsp/Timeseries/Nino34/.

Figure 4. Correlation of cross-validated continuous 9-month ahead forecast for May (from May 1870 to May 2015). (a) Correlation between observed and “forecast” 
monthly mean precipitation for May using previous August hidden states; (b) correlation between observed and “forecast” precipitation for May using previous August 
NINO3.4; (c) difference in correlations between using hidden state and NINO3.4. The significant correlations at the 5% level are highlighted using the stipples.
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