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[1] Stochastic disaggregation models are used to simulate streamflows at multiple sites
preserving their temporal and spatial dependencies. Traditional approaches to this
problem involve transforming the streamflow data of each month and at every location to a
Gaussian structure and subsequently fitting a linear model in the transformed space.
The simulations are then back transformed to the original space. The main drawbacks of
this approach are (1) transforming marginals to Gaussian need not lead to the correct
multivariate distribution particularly if the dependence across variables is nonlinear, and
(2) the number of parameters to be estimated for a traditional disaggregation model
grows rapidly with an increase in space or time components. We present a
K-nearest-neighbor approach to resample monthly flows conditioned on an annual value
in a temporal disaggregation or multiple upstream locations conditioned on a
downstream location for a spatial disaggregation. The method is parsimonious, as the only
parameter to estimate is K (the number of nearest neighbors to be used in resampling).
Simulating space-time flow scenarios conditioned upon large-scale climate information
(e.g., El Niño–Southern Oscillation, etc.) can be easily achieved. We demonstrate the
utility of this methodology by applying it for space-time disaggregation of streamflows in
the Upper Colorado River basin. The method appropriately captures the distributional
and spatial dependency properties at all the locations.
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1. Introduction

[2] Synthetic simulation of streamflow sequences is used
in a variety of applications including reservoir operation and
for evaluating water supply reliability. Multiple reservoirs
and stream sections are often considered in a system’s
operation plan. For this purpose, streamflows generated at
different sites need to be consistent. This implies that the
flow at a downstream gauge is the sum of tributary flows;
the annual flow is the sum of monthly flows; the monthly
fraction of flows in wet/dry years are representative; and the
dependencies of flows between the sites have to be repro-
duced. To this end, the disaggregation problem can be
thought of as simulation from the conditional probability
density function (PDF) f (XjZ), where X is a vector of
disaggregated (e.g., monthly flows) flows and Z is the
aggregate (e.g., annual) flows and other terms (e.g., the
first month’s correlation with the last month of the previous

year), subject to the condition that the disaggregated flows
add up to the aggregate flows, which is the additivity
property. Often a simpler approach has been used consisting
of fitting a model of the form

X ¼ AZ þ Be; ð1Þ

where Z is usually taken to be just the annual flow and
A and B are matrices of the model parameters that are
estimated to ensure the additivity property and e is the
stochastic term. Notice that the above form is that of a
linear regression, which has a rich developmental history;
consequently, the main assumption is that the stochastic
term and hence the data (X and Z) are assumed to be
normally distributed. To achieve this, the data are typically
transformed to a normal distribution by appropriate
transforms before the model is fit. The simulation proceeds
as follows: (1) An aggregate streamflow is generated from
an appropriate linear or nonlinear model or equivalent data
set. (2) The simulated aggregate flow is then disaggregated
using the above model. The simulated flows are back
transformed to the original space. This linear stochastic
framework for streamflow disaggregation was first devel-
oped by Valencia and Schaake [1973] and subsequently
modified and improved by several others [Mejia and
Rousselle, 1976; Lane, 1979; Salas et al., 1980; Stedinger
and Vogel, 1984; Stedinger et al., 1985; Salas, 1985;
Santos and Salas, 1992].
[3] Since these models are fit in the transformed space,

the additivity of the disaggregated flows to the aggregate
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flows in the original space after back transformation is not
guaranteed. Hence several adjustments have to be made
[e.g., Lane, 1982; Stedinger and Vogel, 1984; Grygier and
Stedinger, 1988]. Furthermore, the model is designed to
reproduce the statistics in the transformed space but repro-
duction is not guaranteed in the original space.
[4] Alternate approaches to disaggregation [Tao

and Delleur, 1976; Todini, 1980; Koutsoyiannis, 1992;
Koutsoyiannis and Manetas, 1996; Koutsoyiannis, 2001]
allow representation of non-Gaussian data directly in the
disaggregation scheme to avoid the need for data transfor-
mation. These techniques can incorporate the skewness from
the historic data into the stochastic term [Tao and Delleur,
1976; Todini, 1980; Koutsoyiannis, 1999]. Koutsoyiannis
[2001] provides a stepwise disaggregation scheme that
incorporates an adjustment procedure that preserves the
additivity property and certain higher-order statistics. These
methods are iterative in nature and thus computationally
intensive besides requiring assumptions of linearity.
[5] Recent advances in nonparametric methods (see Lall

[1995] for an overview of nonparametric methods and their
applications to hydroclimatic data) provide an attractive
alternative to linear parametric methods. Unlike the linear
approach where a single linear model is fit to the entire
data, the nonparametric methods involve ‘‘local’’ functional
fitting. The function is fit to a small number of neighbors at
each point. This approach has the ability to capture any
arbitrary features (nonlinearities, non-normal, etc.) exhibited

by the data. Nonparametric methods have been applied to
a variety of hydroclimate modeling questions including
stochastic daily weather generation [Rajagopalan and Lall,
1999; Yates et al., 2003], streamflow simulation [Lall and
Sharma, 1996; Sharma et al., 1997; Prairie et al., 2006],
streamflow forecasting [Grantz et al., 2005; Singhrattna et
al., 2005], and flood frequency estimation [Moon and Lall,
1994] to mention a few.
[6] Kernel estimator based nonparametric streamflow

simulation at a single site was developed by Sharma et al.
[1997] where they also demonstrate its advantage over
traditional linear models. Sharma and O’Neil [2002] im-
proved on this to capature the interannual dependence.
However, kernel methods can be inefficient in higher
dimensions (e.g., space-time disaggregation), as noted by
Sharma and O’Neil [2002] and as such, difficult to imple-
ment in multivariate problems such as space-time disaggre-
gation in a network. Lall and Sharma [1996] developed a
K-nearest-neighbor (K-NN) bootstrap approach to time
series modeling and applied it to streamflow simulation.
Being a bootstrap method, values not observed in the
historic data will not be generated in the simulations. To
address this, a modified version of the K-NN bootstrap was
developed by Prairie et al. [2005, 2006], and this was
further used in streamflow forecasting [Grantz et al., 2005;
Singhrattna et al., 2005]. Semiparametric approaches that
combine the traditional linear modeling and bootstrap
methods for streamflow simulation have also been devel-
oped [Souza Filho and Lall, 2003; Srinivas and Srinivasan,
2001].
[7] Tarboton et al. [1998] developed a kernel-based

approach (an extension of their single site methodology
by Sharma et al. [1997]) for temporal (i.e., annual to
monthly) streamflow disaggregation. Kumar et al. [2000]
adopted K-NN bootstrap techniques in conjunction with an
optimization scheme for spatial and temporal disaggregation
of monthly streamflows to daily flows. They indicate that
disaggregating monthly flow to daily involves a higher-
dimensional problem that cannot always be well represented
by traditional parametric disaggregation techniques. Addi-
tionally, daily flows typically display nonlinear flow
dynamics that are not adequately modeled with traditional
techniques. The optimization framework allows for in-
creased flexibility in specifying the functional relationships
the disaggregation scheme needs to preserve but at a great
computational cost. Srinivas and Srinivasan [2005] devel-
oped a semiparametric disaggregation method for a multi-
site model they termed as hybrid moving block bootstrap
multisite model (HMM). In this approach a parametric
model (such as a linear autoregressive model) is fit to the
data and the residuals from this model are resampled by
block bootstrapping (the nonparametric component). This
method is able to incorporate the strengths of both para-
metric and nonparametric models but still requires multiple
steps.
[8] In practical terms, there is a need for a robust, simple,

and parsimonious approach for space-time streamflow dis-
aggregation that can capture the features exhibited by the
data. To this end, here we develop a K-NN based disaggre-
gation framework. The proposed framework and the algo-
rithm are first described, followed by its application to four
streamflow sites on the Upper Colorado River basin, con-

Figure 1. Streamflow locations within the Upper Colorado
River basin.
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cluding with a summary and discussion of applications and
the future direction for this research.

2. K-Nearest-Neighbor Based Disaggregation
Framework

[9] The framework follows the work of Tarboton et al.
[1998] except that the kernel-based density estimation is
replaced with a K-nearest-neighbor approach. We describe
the framework and the implementation algorithm for the
case of a temporal (annual to monthly) disaggregation, and
the same steps follow for spatial disaggregation. As an
example, consider X to be a d = 12 dimensional monthly
flow vector where Z is the annual flow. As mentioned
earlier, the disaggregation problem amounts to simulation
from the conditional PDF f (XjZ) with the constraint that the
disaggregated flows sum up to the aggregate flow. The
conditional PDF can be written as

f X jZð Þ ¼ f X ; Zð Þ=
Z

f X ; Zð ÞdX : ð2Þ

The numerator in the above equation requires the estimation
of a d + 1 dimensional joint density function f (X, Z).
However, because of the additivity requirement, all the mass
of the this joint PDF is situated on the d -dimensional
hyperplane defined by

X1 þ X2 þ � � � þ Xd ¼ Z : ð3Þ

Thus, for a particular value of Z (the aggregate annual flow)
the conditional PDF can be visualized geometrically as the
probability density on a d � 1 dimensional hyperplane slice
through the d -dimensional density f(X). The conditional
PDF can be specified through a rotation of the vector X into
a new vector Y whose last coordinate is aligned perpendi-
cular to the hyperplane defined by (3). Tarboton et al.
[1998] describe this in detail and illustrate this point very
well in their Figure 1. The conditional PDF is constructed in
the rotated space ( f (YjZ) ), and the simulation is also done
in this rotated space before back rotation. In the Tarboton et
al. [1998] framework, kernel density estimators are used to
construct this conditional PDF and subsequently for
simulation. As mentioned earlier, the kernel methods are
known to be inefficient and cumbersome to implement in
higher dimensions. This limits their ability to extend the
approach to space and time disaggregation.
[10] We depart from the Tarboton et al. [1998] framework

here and instead develop a K-NN based bootstrap approach
to construct and simulate from the conditional PDF (f (YjZ) ).
The methodology is described in the algorithm below.

2.1. The Algorithm

[11] The steps involved in the algorithm are as follows:
[12] 1. The historic data of monthly flows are oriented in

X such that seasons are across rows and years are across
columns. X is rotated into Y by the rotation matrix R where,

Y ¼ RX: ð4Þ

The procedure for obtaining the rotation matrix is described
in detail in the appendix of Tarboton et al. [1998], here we
summarize from their description. The rotation matrix is
developed from a standard basis (basis vectors aligned with
the coordinate axes) which is orthonormal but does not have
a basis vector perpendicular to the conditioning plane
defined by (3). One of the standard basis vectors is replaced
by a vector perpendicular to the conditioning plane. Oper-
ationally, this entails starting with an identity matrix and
replacing the last row with 1/

ffiffiffi
d

p
. The basis set is then no

longer orthonormal. The Gram Schmidt orthonormalization
procedure is applied to the remaining d � 1 standard basis
vectors to obtain an orthonormal basis that now includes a
vector perpendicular to the conditioning plane. The resulting
R matrix is orthonormal and has the property RT = R�1.
Further, note that R is only a function of the dimension d.
[13] The last row of the matrix Y is Yd = Z/

ffiffiffi
d

p
= Z0. The

first d � 1 components of the vector Y can be denoted as U
and the last component is Z0, i.e., Y = (U, Z0). Hence the
simulation involves resampling from the conditional PDF
(f (UjZ0) ).
[14] 2. An aggregate flow (i.e., annual flow) z* is

generated from an appropriate model fitted to the annual
flow data. This could be a traditional autoregressive model
[Salas, 1985] or a K-NN bootstrap approach [Lall and
Sharma, 1996] or a kernel density estimator based method
[Sharma et al., 1997] or a modified K-NN bootstrap
[Prairie et al., 2005, 2006] or a block bootstrap resampling
[Vogel and Shallcross, 1996]. Here we used the modified
K-NN [Prairie et al., 2006].
[15] If a simple K-NN based approach is applied, the

annual flows will be resampled from the historic data only
generating values seen in the historic record. To generate

Figure 2. Schematic of space-time disaggregation.

W03432 PRAIRIE ET AL.: TECHNIQUE FOR DISAGGREGATION OF STREAMFLOWS

3 of 10

W03432



annual values not seen before, either the kernel density
estimator, the modified K-NN, or a traditional parametric
model can be implemented.
[16] 3. K-nearest neighbors (corresponding to K historic

years) of the generated zsim
0 = z*/

ffiffiffi
d

p
are identified. The

nearest neighbors are obtained by computing the distance
between the generated zsim

0 and the historic Z0. The neigh-
bors are assigned weights based on the function

W kð Þ ¼ 1

k
PK
i¼1

1

i

k ¼ 1; 2; :::K: ð5Þ

This weight function gives more weight to the nearest
neighbors and less to the farthest neighbors. For further
discussion on the choice of the weight function, readers are
referred to Lall and Sharma [1996].
[17] The number of nearest neighbors K is based on the

heuristic scheme K =
ffiffiffiffi
N

p
where N equals the sample size

[Lall and Sharma, 1996], following the asymptotic argu-
ments of Fukunaga [1990]. Objective criteria such as
generalized cross validation (GCV) can also be used. The
above heuristic scheme has performed well in a variety of
applications [Lall and Sharma, 1996; Rajagopalan and
Lall, 1999; Yates et al., 2003].

[18] Using these weights as a probability metric, one of
the neighbors is resampled. Suppose the selected neighbor
corresponds to year j of the historic record.
[19] 4. The corresponding vector Y* is created as

Y* ¼ Uj; z
0
sim

� �
ð6Þ

[20] 5. The final step is the back rotation to the original
space,

x* ¼ RTY* ð7Þ

where x* is the vector of disaggregated (i.e., monthly) flows
that will sum to z*.
[21] Steps 2–5 are repeated to generate ensembles of

monthly streamflows. The same steps can be used for
spatial disaggregation, in which case the matrix X repre-
sents the spatial streamflows and Z represents the spatial
aggregate flow.
[22] Even though we resample historic data, steps 4 and 5

enable the simulation of monthly values not seen in the
historic record and can also generate negative values.
However, in our application here the negative values
simulated were extremely small in number; less than 0.4%
of the simulated values for all gauges were negative.

Figure 3. Box plots of monthly and annual statistics for flows at Green River at Green River, Utah. The
box represents the interquartile range, and whiskers extend to the 5th and 95th percentile of the
simulations. The statistics of the historic data are represented as a triangle.
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2.2. Numerical Example

[23] To further explain the algorithm described above, a
simple numerical example is presented. In this example we
assume two variables (say, two seasons) and they sum to the
aggregate flows. The X matrix (seasonal flows) and the
vector Z (aggregate flows) are given as

X ¼ 222 585

232 1206

� �
; Z ¼ 454

1791

� �
ð8Þ

The rotation matrix R is obtained as described in step 1 of
algorithm resulting in

R ¼ 0:7071068 �0:7071068
0:7071068 0:7071068

� �
: ð9Þ

The rotated matrix Y is computed as

Y ¼ RX ¼ �7 �439

321 1266

� �
: ð10Þ

Note that the last row of Y is equal to Z/
ffiffiffi
d

p
(here d = 2).

Suppose the simulated aggregate flow is zsim = 736; then

z0sim ¼ 736ffiffiffi
2

p ¼ 520:

On the basis of the resampling method described in step 3 of
the algorithm above, suppose that we chose the second year;
then the vector

Y* ¼ u2;1; z
0
sim

� �
¼ �439 520½ �: ð11Þ

The disaggregated vector xsim is obtained as

xsim ¼ RTY*

¼ 0:7071068 0:7071068
�0:7071068 0:7071068

� �T �439

520

� �
¼ 57

679

� �
: ð12Þ

Note that the additivity property Sxsim = zsim is satisfied.

3. Model Evaluation

[24] The performance of the K-NN space-time disaggre-
gation approach is evaluated by applying it to four stream-
flow locations on the Upper Colorado River basin shown in
Figure 1. These gauges are Colorado River near Cisco, Utah
(site 1); Green River at Green River, Utah (site 2); San Juan
River near Bluff, Utah (site 3); and Colorado River at Lees
Ferry, Arizona (site 4). Monthly natural streamflows at these
locations are available for the 98-year period spanning
1906–2003. Naturalized streamflows are computed by
removing anthropogenic impacts (i.e., reservoir regulation,
consumptive water use, etc.) from the recorded historic flows.
(The natural flow data and additional reports describing

Figure 4. Same as Figure 3 but for flows at Colorado River at Lees Ferry, Arizona.
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these data are available at http://www.usbr.gov/lc/region/
g4000/NaturalFlow/index.html.)
[25] The disaggregation schematic is shown in Figure 2.

In this, we begin with an annual streamflow at an ‘‘index’’
gauge which is temporally disaggregated to 12 monthly
flows. The monthly flows are then disaggregated to flows at
the spatial locations. Thus the disaggregation algorithm is
applied twice, first for the temporal and second for the
spatial disaggregation. The ‘‘index’’ gauge is an imaginary

gauge whose monthly flows are created as the sum of the
monthly flows at all the four locations. The annual flow at
the index gauge was generated from the modified K-NN
lag-1 approach [Prairie et al., 2005, 2006]. Using the space-
time disaggregation approach, we made 500 simulations
each of 98 years length. The following statistics are calcu-
lated from the simulations and compared with those from
the historic data to evaluate the performance of the proposed
approach.

3.1. Performance Statistics

[26] These performance statistics include monthly and
annual (1) mean, (2) standard deviation, (3) coefficient of
skew, (4) maximum, (5) minimum, (6) backward lag-1
autocorrelation of the flows at the four locations,
(7) probability density functions (PDF), (8) correlation of
flows between the locations, and (9) surplus and drought
statistics. Comparisons with a standard parametric alterna-
tive [Salas et al., 1980] are also provided.

4. Results

[27] The results are displayed in Figures 3–10 as box
plots where the box represents the interquartile range and
whiskers extend to the 5th and 95th percentile of the
simulations (note this is different from the standard box
plot definition). The statistics of the historic data are
represented as a triangle connected by a solid line. Perfor-
mance on a given statistic is judged as good when the
historic value falls within the interquartile range of the box
plots, while increased variability is indicated by a wider box
plot.
[28] The mean was well reproduced at all sites and

therefore not included in Figures 3 and 4. Performance
statistics of Green River at Green River, Utah are shown in
Figure 3. The standard deviation and skews are well
preserved for most all the months and at the annual time
step. The low flow months January and February skews are
slightly underrepresented. The lag-1 autocorrelations are
also well simulated though February is slightly over corre-
lated. However, the correlation between the first month of a
year and the last month of the preceding year is not
preserved. At the index gauge the temporal disaggregation
does not incorporate this dependence; therefore it is not
captured in the simulations at the spatial locations. In this
basin the flows are largely snowmelt driven, and thus the
first (January) and last (December) months of the calendar

Figure 5. Box plots of monthly and annual cross
correlation between the streamflows at the four locations.

Figure 6. Temporal cross correlation pairs for streamflows at Colorado River at Lees Ferry, Arizona.
The x-axis sequence is 1–2, 1–3,. . ., 1–12, 1–A, 2–3, 2–4,. . ., 2–12, 2–A, 3–4,. . .. Months are
numbered according to calendar year, and letter A represents annual.
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year are part of the low-flow season (accounting for about
4% on the annual flow); hence capturing their correlation
was not essential. However, we deemed it important to
capture the correlations in the remaining months especially
during the high-flow months which are well preserved.
Kumar et al. [2000] resolved this issue with their optimi-
zation framework but at a computation cost. Linear adjust-
ment procedures have also been developed to capture the
first month’s correlation with the last month of the preced-
ing year [Grygier and Stedinger, 1988; Lane and Frevert,
1990; Koutsoyiannis and Manetas, 1996; Koutsoyiannis,
2001]. They all, though, involve estimating several addi-
tional parameters and can affect reproduction of other
statistics.
[29] The maximum and minimum flow statistics are also

reasonably well simulated for most of the months. Extrap-
olation beyond the maximum historic flow occurs more
extensively for some months (January, February, August–

September, November), while other months (March–July,
October, December) display limited to no extrapolation. A
very small number (0.4%) of negative numbers were gener-
ated, mostly in low-flow months, and had no significant
impact on statistics. Similar results were obtained for the
flows at Colorado River near Lees Ferry, Arizona (Figure 4)
and also at the remaining two locations (figures not shown).
[30] The spatial cross correlation between the monthly

flows at Colorado River at Lees Ferry, Arizona (site 4 the
downstream location) and the other three gauges are shown
in Figure 5. The cross correlations are very well captured
during the spring months (the high-flow season) and also
during other months. There is a slight undersimulation of the
cross correlations during the low-flow months of January–
March and November–December. Figure 6 displays the
temporal cross correlation of the monthly and annual flows
at several lags for the Colorado River at Lees Ferry, Arizona
(site 4). These statistics are also very well simulated.

Figure 7. Box plots of PDF of June flows from San Juan River near Bluff, Utah.

Figure 8. Box plots of drought statistics for Colorado River at Lees Ferry, Arizona.
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[31] As described earlier, one of the advantages of non-
parametric methods is the ability to capture any arbitrary
PDF structure. To test this we estimated the PDF from the
simulations and compared them with those of the observed
data. Figure 7 presents the PDF for June flows at San Juan
River near Bluff, Utah. The PDF of the historic data is
shown by the solid line, and the boxes and whiskers are
those of the simulations. The simulations capture the non-
normal feature of the historic PDF very well. Nonparametric
kernel density estimators are used to compute the PDF
[Bowman and Azzalini, 1997]. Similar performance was
seen with PDFs from other months and locations.
[32] To evaluate the performance of the disaggregation

approach in capturing longer temporal properties, we cal-
culated surplus and drought statistics which include the
longest surplus (LS), the longest drought (LD), the maxi-
mum surplus (MS), and the maximum deficit (MD) based
on the long-term mean as the threshold for drought. These
statistics for the flows at Colorado River at Lees Ferry are
shown in Figure 8. The LS statistics exactly reproduces the
historic data. The LD statistic is captured within the
interquartile range of the simulations though it tends to be
underrepresented. The MS is again captured within the
interquartile range of the simulations and is well repre-
sented. While the MD statistic shows the greatest variability
of the all these statistics, though captured within the
interquartile range, the MD tends to be underrepresented.

The simulations generate droughts that are longer in length
and greater in magnitude than those in the observed record,
though these are only generated for less than 25% of the
simulations.

4.1. Comparison With a Parametric Model

[33] We compared the simulations from the K-NN space-
time disaggregation approach developed in this research to a
traditional parametric model (of the form in equation (1))
developed by Mejia and Rousselle [1976] and Salas et al.
[1980]. The parametric disaggregation models are designed
to capture all the basic statistics, but as described earlier,
they have difficulty in capturing nonnormal PDF structure
and also the coefficient of skewness. These two statistics
depend upon the appropriate transformations used to trans-
form the data to a normal distribution. The transformations
applied for the parametric model all passed a skewness test
for normality, i.e., the transformed data had a coefficient of
skew close to zero. Figures 9 and 10 display the PDF of
May flows and the monthly and annual coefficient of skew
for the Colorado River at Lees Ferry, Arizona. The historic
PDF displays a clear bimodal feature which is extremely well
preserved by the K-NN disaggregation model (Figure 9),
while the parametric model (Figure 10) is unable to capture
this feature, instead reproducing a normal structure. Similar
results are seen with the coefficient of skewness that is
well represented by the nonparametric model but not by

Figure 9. Box plots from nonparametric disaggregation model of (left) PDF of May flows and (right)
monthly and annual coefficient of skew from Colorado River at Lees Ferry, Arizona.

Figure 10. Box plots from parametric disaggregation model of (left) PDF of May flows and (right)
monthly and annual coefficient of skew from Colorado River at Lees Ferry, Arizona.
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the parametric model. It should be noted that even though
the transformations were effective, the parametric model
was fitted to the transformed data and hence does not
guarantee the reproduction of the statistics in the original
space.

5. Summary and Discussion

[34] We have presented a simple, robust, and parsimoni-
ous framework for space-time simulation of streamflows on
a large river network. We adapted the Tarboton et al. [1998]
framework but used a K-NN approach to construct and
simulate from the conditional PDF. The model captures all
the distributional properties and the spatial dependence of
the flows at all the locations. Simulating space-time flow
scenarios conditioned upon large-scale climate information
(e.g., El Niño–Southern Oscillation, etc.) for seasonal
forecasts can be easily achieved.
[35] A few limitations exist in the proposed nonparametric

disaggregation approach, which should be considered. An
obvious limitation was the inability to capture the correlation
between the first month of one year and the last month of the
previous year. As presented, the proposed approach only
solved for the monthly flows conditioned on the dependence
structure for the current year. Incorporating the last month’s
flow in the conditional function could be explored to remedy
this limitation in scenarios where preserving this correlation
is essential. Another limitation in the proposed approach
can arise if extreme values are of interest. Extrapolation
beyond observed monthly flows is limited in comparison
with parametric counterparts. This limitation needs to be
considered on a case-by-case basis. With the proposed
approach this limitation can be addressed with the choice
of a proper annual flow model. An annual simulation model
that generates more extreme annual flows will in turn
generate more extreme monthly values.
[36] The proposed approach involved a two-step process

in which the temporal disaggregation was first performed
followed by the spatial disaggregation. The work of Kumar
et al. [2000] considers a simultaneous space-time disaggre-
gation based on the K-NN method in an optimization
framework, albeit with significant computational effort.
For the annual to monthly disaggregation, an approach that
blends elements of the method presented here with the
optimization approach of Kumar et al. [2000] may provide
a means to perform a simultaneous disaggregation.
[37] Efforts are under way to integrate this framework

with a basin-wide salinity model [Prairie et al., 2005] to
generate salinity ensembles. Additionally, tree ring recon-
structions of past annual streamflows at Lees Ferry will be
incorporated into this approach to simulate (i.e., reconstruct)
monthly streamflows at all the locations in the Upper
Colorado River basin that may include extreme events
addressing the second aforementioned limitation. Together
these projects will enable the evaluation of various policy
strategies in the basin.

[38] Acknowledgments. Funding for this research by the Bureau of
Reclamation’s Lower Colorado regional office via grant 04PG303326 is
gratefully acknowledged. Continued support by Kib Jacobson of the Bureau
of Reclamation’s Upper Colorado regional office is appreciated. Insightful
comments from David Tarboton, Demetris Koutsoyiannis, one anonymous
reviewer, and associate editor Tim Cohn are thankfully acknowledged.
Thanks are also due the Center for Advanced Decision Support in Water

and Environmental Systems (CADSWES) at the University of Colorado,
Boulder, for use of its facilities and computational support.

References
Bowman, A. W., and A. Azzalini (1997), Applied Smoothing Techniques
for Data Analysis, Clarendon, Oxford, U. K.

Fukunaga, K. (1990), Introduction to Statistical Pattern Recognition, Else-
vier, New York.

Grantz, K., B. Rajagopalan, M. Clark, and E. Zagona (2005), A technique
for incorporating large-scale climate information in basin-scale ensemble
streamflow forecasts, Water Resour. Res., 41, W10410, doi:10.1029/
2004WR003467.

Grygier, J. C., and J. R. Stedinger (1988), Condensed disaggregation pro-
cedures and conservation corrections for stochastic hydrology, Water
Resour. Res., 24(10), 1574–1584.

Koutsoyiannis, D. (1992), A nonlinear disaggregation method with a
reduced parameter set for simulation of hydrologic series, Water Resour.
Res., 28(12), 3175–3191.

Koutsoyiannis, D. (1999), Optimal decomposition of covariance matrices
for multivariate stochastic models in hydrology, Water Resour. Res.,
35(4), 1219–1229.

Koutsoyiannis, D. (2001), Coupling stochastic models of different time-
scales, Water Resour. Res., 37(2), 379–391.

Koutsoyiannis, D., and A. Manetas (1996), Simple disaggregation by ac-
curate adjusting procedures, Water Resour. Res., 32(7), 2105–2117.

Kumar, D. N., U. Lall, and M. R. Peterson (2000), Multisite disaggregation
of monthly to daily streamflow, Water Resour. Res., 36(7), 1823–1833.

Lall, U. (1995), Recent advances in nonparametric function estimation:
Hydraulic applications, U. S. Natl. Rep. Int. Union Geod. Geophys.
1991–1994, Rev. Geophys., 33, 1093–1102.

Lall, U., and A. Sharma (1996), A nearest neighbor bootstrap for resam-
pling hydrologic time series, Water Resour. Res., 32(3), 679–693.

Lane, W. L. (1979), Applied Stochastic Techniques, Users Manual, Eng.
and Res. Cent., Bur. of Reclam., Denver, Colo.

Lane, W. L. (1982), Corrected parameter estimates for disaggregation
schemes, in Statistical Analysis of Rainfall and Runoff, edited by V. P.
Singh, Water Resour. Publ., Highlands Ranch, Colo.

Lane, W. L., and D. K. Frevert (1990), Applied Stochastic Techniques,
Personal Computer Version 5.2, Users Manual, Earth Sci. Div., Bur.
of Reclam., Denver, Colo.

Mejia, J. M., and J. Rousselle (1976), Disaggregation models in hydrology
revisited, Water Resour. Res., 12(2), 185–186.

Moon, Y.-I., and U. Lall (1994), Kernel function estimator for flood fre-
quency analysis, Water Resour. Res., 30(11), 3095–3103.

Prairie, J. R., B. Rajagopalan, T. J. Fulp, and E. A. Zagona (2005), Statis-
tical nonparametric model for natural salt estimation, J. Environ. Eng.,
131(1), 130–138.

Prairie, J. R., B. Rajagopalan, T. J. Fulp, and E. A. Zagona (2006), Mod-
ified K-NN model for stochastic streamflow simulation, J. Hydrol. Eng.,
11(4), 371–378.

Rajagopalan, B., and U. Lall (1999), A k-nearest-neighbor simulator for
daily precipitation and other weather variables, Water Resour. Res.,
35(10), 3089–3101.

Salas, J. D. (1985), Analysis and modeling of hydrologic time series, in
Handbook of Hydrology, edited by D. R. Maidment, pp. 19.1–19.72,
McGraw-Hill, New York.

Salas, J. D., J. W. Delleur, V. Yevjevich, and W. L. Lane (1980), Applied
Modeling of Hydrologic Time Series, 484 pp., Water Resour. Publ., High-
lands Ranch, Colo.

Santos, E. G., and J. D. Salas (1992), Stepwise disaggregation scheme for
synthetic hydrology, J. Hydraul. Eng., 118(5), 765–784.

Sharma, A., and R. O’Neill (2002), A nonparametric approach for repre-
senting interannual dependence in monthly streamflow sequences, Water
Resour. Res., 38(7), 1100, doi:10.1029/2001WR000953.

Sharma, A., D. G. Tarboton, and U. Lall (1997), Streamflow simulation: A
nonparametric approach, Water Resour. Res., 33(2), 291–308.

Singhrattna, N., B. Rajagopalan, M. Clark, and K. Krishna Kumar (2005),
Forecasting Thailand summer monsoon rainfall, Int. J. Climatol., 25(5),
649–664.

Souza Filho, F. A., and U. Lall (2003), Seasonal to interannual ensemble
streamflow forecasts for Ceara, Brazil: Applications of a mutlivariate,
semiparametric algorithm, Water Resour. Res., 39(11), 1307,
doi:10.1029/2002WR001373.

Srinivas, V. V., and K. Srinivasan (2001), Post-blackening approach for
modeling periodic streamflows, J. Hydrol., 241, 221–269.

W03432 PRAIRIE ET AL.: TECHNIQUE FOR DISAGGREGATION OF STREAMFLOWS

9 of 10

W03432



Srinivas, V. V., and K. Srinivasan (2005), Hybrid moving block bootstrap for
stochastic simulation of multi-site multi-season streamflows, J. Hydrol.,
302, 307–330.

Stedinger, J. R., and R. M. Vogel (1984), Disaggregation procedures for
generating serially correlated flow vectors, Water Resour. Res., 20(1),
47–56.

Stedinger, J. R., D. Pei, and T. A. Cohn (1985), A condensed disaggrega-
tion model for incorporating parameter uncertainty into monthly reser-
voir simulations, Water Resour. Res., 21(5), 665–675.

Tao, P. C., and J. W. Delleur (1976), Multistation, multiyear synthesis of
hydrologic time series by disaggregation, Water Resour. Res., 12(6),
1303–1312.

Tarboton, D. G., A. Sharma, and U. Lall (1998), Disaggregation procedures
for stochastic hydrology based on nonparametric density estimation,
Water Resour. Res., 34(1), 107–119.

Todini, E. (1980), The preservation of skewness in linear disaggregation
schemes, J. Hydrol., 47, 199–214.

Valencia, D. R., and J. C. Schaake (1973), Disaggregation processes in
stochastic hydrology, Water Resour. Res., 9(3), 580–585.

Vogel, R. M., and A. L. Shallcross (1996), The moving blocks bootstrap
versus parametric time series models, Water Resour. Res., 32(6), 1875–
1882.

Yates, D., S. Gangopadhyay, B. Rajagopalan, and K. Strzepek (2003), A
technique for generating regional climate scenarios using a nearest neigh-
bor bootstrap, Water Resour. Res., 39(7), 1199, doi:10.1029/
2002WR001769.

����������������������������
T. Fulp, Bureau of Reclamation, Boulder Canyon Operations Office,

Lower Colorado Region, P.O. Box 61470, Boulder City, NV 89006-1470,
USA. (tfulp@lc.usbr.gov)

U. Lall, Department of Earth and Environmental Engineering, Columbia
University, 500 West 120th Street, New York, NY 10027, USA.
(ula2@columbia.edu)

J. Prairie, Bureau of Reclamation, University of Colorado, 421-UCB,
Boulder, CO 80309, USA. (prairie@colorado.edu)

B. Rajagopalan, Department of Civil, Environmental, and Architectural
Engineering, University of Colorado, 428-UCB, Boulder, CO 80309-0428,
USA. (balajir@colorado.edu)

10 of 10

W03432 PRAIRIE ET AL.: TECHNIQUE FOR DISAGGREGATION OF STREAMFLOWS W03432


