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15 Summary

16 This paper addresses the retrospective detection of step
17 changes at unknown time points in the correlation structure of
18 two or more climate times series. Both the variance of in-
19 dividual series and the covariance between series are ad-
20 dressed. For a sequence of vector-valued observations with an
21 approximate multivariate normal distribution, the proposed
22 method is a parametric likelihood ratio test of the hypothesis
23 of constant covariance against the hypothesis of at least one
24 shift in covariance. The formulation of the test statistic and
25 its asymptotic distribution are taken from Chen and Gupta
26 (2000). This test is applied to the series comprised of the
27 mean summer NINO3 index and the Indian monsoon rainfall
28 index for the years 1871–2003. The most likely change point
29 year was found to be 1980, with a resulting p-value of
30 0.12. The same test was applied to the series of NINO3 and
31 Northeast Brazil rainfall observations from the years 1856–
32 2001. A shift was detected in 1982 which is significant at
33 the 1% level. Some or all of this shift in the covariance matrix
34 can be attributed to a change in the variance of the Northeast
35 Brazil rainfall. A variation of this methodology designed to
36 increase power under certain multiple change point alterna-
37 tives, specificallly when a shift is followed by a reversal, is
38 also presented. Simulations to assess the power of the test
39 under various alternatives are also included, in addition to a
40 review of the literature on alternative methods.

41421. Introduction

43Assessing the stability over time of climate pro-
44cesses and the connections between them is cru-
45cial to our understanding of a changing climate.
46Changes in variability or connections between
47processes, if robust, can profoundly change our
48assessment of climate impacts and affect climate
49predictability. An area of great recent concern
50is the relationship between the Indian mon-
51soon rainfall (IMR) and the El Niño=Southern
52Oscillation (ENSO) phenomenon. The existence
53of a significant negative correlation between time
54series has been long been observed (Walker and
55Bliss 1937), but whether the strength of the rela-
56tionship has decreased in recent decades is a sub-
57ject of current debate.
58Running correlation analysis, in which corre-
59lations are computed in overlapping moving win-
60dows, has frequently been used in an attempt to
61document and understand changes in the correla-
62tion between two climate indices. In particular,
63the existence of low-frequency modes of vari-
64ability is of current interest in many areas of
65climate research, and running correlations have
66been used to represent the multi-decadal evolu-
67tion of the relationship between two processes.
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1 Among others, Krishnamurthy and Goswami
2 (2000) have used running correlations to argue
3 for the existence of low-frequency (15–25 year)
4 oscillations in the relationship between the IMR
5 and ENSO. Parthasarathy et al. (1991) used
6 similar techniques to examine the relationships
7 between monsoon rainfall and other climate
8 variables.
9 However, Gershunov et al. (2001) have shown

10 that there are serious problems in the physical
11 interpretation of the results of a running-correla-
12 tion analysis. These problems stem from the fact
13 that a running correlation analysis applied to any
14 two processes, even independent processes, pro-
15 duces what appears to be a low-frequency peri-
16 odic evolution in the correlation. This however, is
17 merely an artifact of the method itself and does
18 not reflect any characteristic of the relationship
19 between the processes. Sample correlations are
20 inherently subject to random fluctuations, and
21 the overlapping nature of the running correla-
22 tions turns these fluctuations into smooth trends.
23 Figure 1 (and similar figures in Gershunov et al.
24 (2001)) compares the results of running correla-
25 tion analysis of the ENSO=IMR relationship and
26 of two uncorrelated white noise processes.
27 Gershunov et al. (2001) propose a method of
28 determining whether observed fluctuations in run-
29 ning correlations are different from what would
30 be expected by chance. They suggest comparing
31 the standard deviation (SD) of an observed series
32 of running correlations with upper and lower con-
33 fidence bounds computed from the bootstrapped

34SDs of simulated processes with stationary
35correlations.
36In their scheme, the SD of the running correla-
37tions of the ENSO=IMR series is compared to
38simulations of bivariate Gaussian observations
39with a correlation of 0.6 (the correlation of the
40entire ENSO=IMR series is about �0.6). They
41find that the ENSO=IMR series is actually signif-
42icantly less variable than the simulations, with
43the observed SD below 5th percentile of the boot-
44strapped SDs of the simulations. They suggest
45that there is a physical process moderating the
46fluctuations of the sliding correlations.
47While Gershunov et al.’s simulations help to
48illuminate the distribution of a running correla-
49tion series with constant correlation, the use of
50the SDs of the running correlation to characterize
51the evolution of the process is an indirect way to
52address the issue of a potentially changing rela-
53tionship. The hypotheses being tested using their
54proposed method are not clearly related to the
55behavior of the processes themselves. Rather,
56they refer only to their running correlations, sta-
57tistics whose variability does not give clear in-
58sight into the underlying correlation structure.
59Kwon et al. (2005) use running correlation
60analysis and empirical orthogonal functions to
61examine the connection between ENSO and the
62Western North Pacific (WNP) summer monsoon.
63They apply the significance test suggested by
64Gershunov and find that the variation in the slid-
65ing correlations is significant at the 10% confi-
66dence level. Based on a comparison of the first

Fig. 1. Comparing the 21-year windowed running correlations of the IMR=ENSO time series with those of two uncorrelated
simulated white noise processes illustrates Gershunov et al.’s (2001) observation that apparent periodic fluctuations in running
correlations are not reliable indicators of a changing underlying correlation structure, as these fluctuations exist even in stable,
uncorrelated processes
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1 two leading empirical orthogonal functions (EOF)
2 of WNP summer-mean precipitation (based on
3 station data), they conclude that the relationship
4 in the period from 1994–2003 is weaker than in
5 1979–1993. In the first time period they find that
6 the first mode of variation is one which is highly
7 correlated with ENSO, and the second mode is
8 highly correlated with another precipitation in-
9 dex, WNP Monsoon index (WNPMI). In the lat-

10 ter period, they find the same 2 dominant modes,
11 but the order is reversed. In other words, the
12 ENSO mode is the first dominant mode in the
13 1979–1993 period, and drops to the second dom-
14 inant mode in the 1994–2004 period. The authors
15 conclude from this that the relationship with
16 ENSO has weakened. This is clearly an interest-
17 ing observation, but it is difficult to firmly dis-
18 tinguish from chance variability without knowing
19 the probability of such a reversal happening
20 by chance.
21 Maraun and Kurths (2005) use nonlinear time-
22 series methods to investigate the evolution of the
23 phase coherence between ENSO and IMR series
24 over the 1871–2004 time period. They decom-
25 pose the interannual oscillation dynamics of the
26 two series into amplitude and phase, assessing
27 the relationship between them in terms of phase
28 coherence irrespective of the amplitude. They
29 find periods (1886–1908) and (1964–1980) in
30 which the phases are strongly coupled in com-
31 parison to the rest of the time period. They also
32 develop a simulation scheme by which to judge
33 statistical significance. Empirical probabilities of
34 typical lengths of interannual oscillations are
35 computed from the ENSO and AIR series and
36 used to create 1,000,000 pairs of annually re-
37 solved 150-year time series. Based on the simu-
38 lations, the observed periods of phase coherence
39 are found to be highly significant.
40 Kumar et al. (1999) use resampling methods
41 to estimate the 95% upper confidence bound for
42 21-year sliding correlations and conclude that a
43 change in the behavior of the ENSO=IMR corre-
44 lations has occurred. The series is resampled
45 1000 times in random 21-year chunks, and 5th

46 and 95th percentiles of the 1000 sample correla-
47 tion coefficients are computed. When the series
48 of observed running correlation is compared to
49 the bootstrapped 90% confidence range they find
50 that in recent decades the sliding correlations
51 have exceeded the upper confidence bound (i.e.

52are closer to zero than would be expected un-
53der the hypothesis or constant correlation) and
54conclude that the ENSO=IMR relationship has
55become weaker. Implicitly, the authors have ex-
56amined each of the 121 individual values of
57the running correlations. This creates multiple
58testing issues: even when all observations are
59drawn from the same distribution, we expect
60that 10% will fall outside of a 90% confidence
61range purely by chance. In light of these issues,
62the statistical significance of the exceedance
63of the 95% upper confidence bound in 1980 is
64unclear.
65There appears to be no clear consensus on the
66best way to attach statistical significance to ob-
67served changes in correlation. A formal statisti-
68cal test with clearly defined hypotheses could be
69useful. Parametric methods for detecting change
70points in a variety of contexts can be found in
71Chen and Gupta (2000). Their parametric likeli-
72hood ratio test for detecting change points will be
73presented with applications to the covariance re-
74lationship between IMR and ENSO, and for com-
75parison, that between the Northeast Brazilian
76Rainfall and ENSO (see Chiang et al. 2000) for
77a discussion of this relationship.) In contrast to
78previous approaches, we will use the covariance
79matrix � rather than the correlation coefficient
80�xy ¼ �xy=�x�y as the parameter of interest. A
81change in � can reflect changes in the covariance
82of the two processes, a change in the variance
83of one or both of the processes, or both. To detect
84a shift in variance rather than covariance, a
85univariate version of Chen and Gupta’s test will
86be used.
87In the applications presented the climate pro-
88cesses are slightly auto-correlated. However, the
89results of our analysis are virtually unchanged
90after removing the autoregressive components
91of the time series. The methods presented are
92intended for use on independent sequences of
93observations, but are also appropriate for the resid-
94uals of an ARIMA model. Local change point
95detection, a variation of the change point detec-
96tion algorithm (Mercurio and Spokoiny 2004;
97Giacomini et al. 2006) is also presented, with
98the intent to increase power under multiple
99change point alternatives, for example in situa-
100tions where a shift is followed by a reversal to the
101original state, a situation that is important in the
102long term study of ENSO and IMR.

Detecting shifts with application to ENSO-Monsoon Rainfall Relationships 3



1 2. Methodology

2 Likelihood ratio tests are a fundamental part of
3 classical statistical hypothesis testing, and the lit-
4 erature on their general properties is extensive.
5 Lehmann (1997) is a good resource for many
6 aspects of hypothesis testing.
7 Given n independent observations x1 � � � xn

8 observed in order, the general null hypothesis
9 for a change point problem is that the probabil-

10 ity distribution of the observations remains con-
11 stant. If Fi is the distribution of xi, the null
12 hypothesis is

H0: F1 ¼ F2 ¼ � � �Fðn�1Þ ¼ Fn ð1Þ
14 and the alternative is

H1: F1 ¼ � � �Fk1
6¼ Fðk1þ1Þ ¼ � � �Fk2

6¼ Fk2þ1

¼ � � �Fkq
6¼ Fðkqþ1Þ ¼ � � � ¼ Fn; ð2Þ

16 where q is the unknown number of change points
17 and 1<k1< � � � kp<n are the unknown positions
18 of the change points. If x1 � � � xn come from a
19 common parametric family of distributions, then
20 the problem is one of detecting changes in the
21 parameters of F1 � � �Fn, and the relevant hypo-
22 theses become H0: �1 ¼ � � � ¼ �n and H1: �1 ¼
23 � � ��k1

6¼ �ðk1þ1Þ ¼ ����k2
6¼ �k2þ1¼����kq

6¼ �ðkqþ1Þ ¼
24 � � �¼�n where �i is the vector of parameters
25 for Fi.
26 The basic test procedure is to formulate the
27 likelihood ratio (LR) based on maximum likeli-
28 hood estimates of the parameters under the null
29 and alternative hypotheses, as well as the m.l.e.
30 of the change points,

LR ¼ Likelihood of data under alternative

Likelihood of data under null
ð3Þ

32 and compute a p-value by comparing the ob-
33 served LR to its distribution under the null
34 hypothesis. In practice � ¼ logðLRÞ is used in-
35 stead of LR. The global procedure outlined by
36 Chen and Gupta (2000) for finding multiple
37 change points is to look for the most significant
38 change point k by testing x1 � � � xn using an alter-
39 native hypothesis of one change point, and then
40 apply the same test on x1 � � � xk and xkþ1 � � � xn

41 iteratively until the null hypothesis is no longer
42 rejected. However, under some multiple change
43 point alternatives the global procedure may
44 lack power, and local change point detection
45 maybe more appropriate. Chen and Gupta have
46 derived the asymptotic distribution of � for

47several distributions, including univariate and
48multivariate normal, gamma, exponential, pois-
49son and binomial, making the method widely
50applicable.
51In the examples to be presented the data are
52yearly observations of vector-valued climate in-
53dices, and the parameter of interest is the co-
54variance matrix. Specifically, we will test for
55significant changes in the covariance structure
56of the ENSO-precipitation relationship in India
57and Brazil in the last 130=150 years. The
58ENSO=IMR and ENSO=Brazilian rainfall series
59are modeled as multivariate normal. One can test
60for changes in the mean vector of their distri-
61butions, in the covariance matrix, or for a simul-
62taneous change in both parameters. When the
63mean is known, it can be removed from the series
64which can then be modeled as mean zero. In
65this case, the null and alternative hypotheses
66are H0: �1 ¼ � � ��n and H1: �1 ¼ � � � ¼ �k 6¼
67�kþ1 ¼ � � ��n where k is the position of the
68single change point at each iteration. The obser-
69vations are x1 � � � xn, each a vector of length m.
70In this case m ¼ 2. Under H0, the joint likelihood
71function of x1 � � � xn is

L0ð�Þ ¼
1

2�

mn=2

j�jn exp

�
� 1

2

Xn

i¼1

xi
0��1xi

�
;

ð4Þ
73so the log-likelihood is

logðL0ð�ÞÞ ¼ �
mn

2
log 2�� n logj�j

� 1

2

Xn

i¼1

xi
0��1xi: ð5Þ

75� is unknown so the maximum likelihood esti-
76mate b�� ¼ 1

n

Pn
i¼1 xi0xi is used, making the maxi-

77mum log likelihood function

log L0ðb��Þ ¼ �mn

2
log 2�

� n

2
log

���� 1n
Xn

i¼1

xi0xi

����� n

2
: ð6Þ

79Under H1, x1 � � � xk are iid Nmð0;�1Þ and
80xkþ1 � � � xn are iid Nmð0;�2Þ. The mle’s for �1

81and �2 are

b��1 ¼
1

k

Xk

i¼1

xi0xi and b��2 ¼
1

n� k

Xn

i¼kþ1

xi0xi

ð7Þ
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1 respectively, making the maximum log likeli-
2 hood function under H1

logL1ðb��1; b��2Þ¼�
mn

2
log2�� k

2
log

����1k
Xk

i¼1

xi0xi

����
�n�k

2
log

���� 1

n�k

Xn

i¼kþ1

xi0xi

�����n

2
;

ð8Þ
4 where j�j is the determinant of �. The position
5 of the change point k must also be estimated, and
6 the mle k is the value which maximizes logðL1Þ.
7 The mle’s can only be obtained for m�k�n� m,
8 so the maximum log likelihood ratio is

�n ¼ max
m<k<n�m

�
log

���� 1n
Xn

i¼1

xi0xi

����n

� log

���� 1k
Xk

i¼1

xi0xi

����k

� log

���� 1

n� k

Xn

i¼kþ1

xi0xi

����n�k�1
2

: ð9Þ

10 Chen and Gupta (2000) have calculated the
11 limiting distribution of �n under H0:

lim
n!1

Pðan�n � bmn�xÞ ¼ e�2e�x

for all x2R;

13 with

an ¼ ð2log log nÞ
1
2 and

bmn ¼ 2 log log nþ m

2
log log logðnÞ

� log

�
�

�
m

2

��
; ð10Þ

15 where m is the dimension of the multivariate nor-
16 mal distribution.
17 This distribution is used to calculate the ap-
18 proximate p-value of an observed �.
19 Perhaps a more common case is one in which
20 the mean is unknown but the same under the null
21 and alternative hypotheses. In this case, the max-
22 imum likelihood estimates for m;�1 and �n can
23 be found numerically by maximizing the log-
24 likelihood function under the alternative,

� mn

2
logð2�Þ � k

2
logj�1j �

n� k

2
logj�nj

� 1

2

�Xk

i¼1

ðxi � mÞ0��1
1 ðxi � mÞ

þ
Xn

i¼kþ1

ðxi � mÞ0��1
n ðxi � mÞ

�
; ð11Þ

26for a specific k. Estimates for all possible change
27points must be computed to find the maximum
28of all likelihood ratios. In practice, this can be
29tedious and may present difficulty for large m.
30Simulation studies indicate that this numerical
31optimization may not be necessary, however.
32For n as small as 25 no substantive difference
33in the distribution of the test statistic was found
34between the case where a process was truly
35mean-zero and the one in the sample average
36was removed from a process with non-zero
37mean. Asymptotically, removing the sample
38mean is justified by the law of large numbers,
39which states that as the sample size increases
40ðxi � �xxÞ ! ðxi � mÞ almost surely. This is the
41approach taken in the examples below. Indepen-
42dence between observations is preserved after
43removing the sample mean under the assumption
44of i.i.d. normality, thus it is important to con-
45firm that this assumption is reasonable before
46proceeding.
47The logic behind the univariate test for homo-
48geneity of variance in the case of known mean is
49the same. The likelihood ratio test statistic is

�n ¼ max
1<k<n�1

�
n log �̂�2

1 � k log �̂�2
1

� ðn� kÞ log �̂�2
n �

n

2

	
: ð12Þ

51where

�̂�2 ¼
Pn

i¼1ðxi � �Þ2

n
; ð13Þ

�̂�2
1 ¼

Pk
i¼1ðxi � �Þ2

k
; and

�̂�2
n ¼

Pn
i¼kþ1ðxi � �Þ2

n� k
; ð14Þ

54The asymptotic distribution under H0 is

lim
n!1

Pðan�n � bn�xÞ ¼ e�2e�x

for all x2R;

ð15Þ
56with

an ¼ ð2log log ðnÞÞ
1
2 and

bn ¼
1

2
log log logðnÞ þ 2 log logðnÞ

� log

�
�

�
1

2

��
: ð16Þ

58In practice, if there is doubt as to whether the
59large sample distribution of the test statistic is
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1 appropriate, critical values can be computed via
2 simulation.
3 The above test procedures all assume that the
4 mean of the process does not change. If one
5 wishes to test the hypothesis

H0: �1 ¼ � � � ¼ �n;m1 ¼ � � � ¼ mn ð17Þ
7 against

H1: �1 ¼ � � � ¼ �k 6¼ �kþ1 ¼ � � ��n;m1

¼ � � � ¼ mk 6¼ mkþ1 ¼ � � � ¼ mn; ð18Þ
9 the relevant test statistic as proposed by Chen

10 and Gupta (2000) is

max
m<k<n�m

ðn log jb��j � k log jb��1j � ðn� kÞ log b��nÞ
1
2;

ð19Þ
12 where

b�� ¼ 1

n

Xn

i¼1

ðxi � �xxÞðxi � �xxÞ0; ð20Þ

b��1 ¼
1

k

Xk

i¼1

ðxi � �xxkÞðxi � �xxkÞ0; b��n

¼ 1

n� k

Xn

i¼kþ1

ðxi � �xxn�kÞðxi � �xxn�kÞ0; ð21Þ

�xxk ¼
1

k

Xk

i¼1

xi; �xxn�k ¼
1

n� k

Xn

i¼kþ1

xi ð22Þ

16 It is important to note that the individual log-
17 likelihood ratios are unreliable near the ends of
18 the time series and typically produce very high
19 values at near k ¼ m and k ¼ n� m. We sug-
20 gest including only the values roughly between
21 k ¼ mþ 3 and k ¼ n� m� 3 in the maximum
22 above.
23 The limiting distribution is

lim
n!1

Pðan�n � b2m�xÞ ¼ e�2e�x

for all x2R;

ð23Þ
25 with

an ¼ ð2 log log nÞ
1
2 and

b2m ¼ 2 log log nþm log log logðnÞ � log �ðmÞ:
ð24Þ

27 The above procedures are valid in the case
28 where observations are independent between time
29 points. In the presence of autocorrelation, the

30same analysis can be applied to the process after
31the autoregressive components are removed (pre-
32whitening). In practice, the components removed
33will be based on sample estimates of the autore-
34gressive parameters, and the sensitivity of the test
35to this extra source of variability may need to be
36explored.
37Local change point detection is a stepwise pro-
38cedure which begins by testing an interval subset
39of the data for homogeneity and increases the
40size of the interval until a change point is de-
41tected or the interval being tested reaches the
42length of the entire series. At each stage of the
43testing procedure, the test statistic is the one out-
44lined above. To begin, a family of intervals
45I ¼ fIj; j ¼ 0; 1 � � �g is defined. Each interval is
46of the form Ij ¼ ½n� mj; n�, with m: m0<
47m1< � � � n where n is the length of the series.
48Beginning with I ¼ I0, the procedure is to test I
49for homogeneity against the alternative of one
50change point as above. If the hypothesis of ho-
51mogeneity is not rejected, the next larger interval
52is tested until a change point is detected or the
53largest possible interval is tested. If, for some
54interval a change point is detected at some point
55k, the procedure begins again using intervals of
56the form Ij ¼ ½k � mj; k�. Because multiple tests
57are being performed, the critical values at each
58stage are adjusted using the Bonferonni method,
59which is to replace the significcance level �
60with �=J where J is the number of tests being
61performed.
62Following Giacomini et al. (2006), we set
63mj ¼ m0cj, where c ¼ 1:5 and m0 ¼ 10. For a
64time series of a given length n, this will yield J
65intervals contained in ½1; n�, which lead to J dif-
66ferent tests of homogeneity. To control the prob-
67ability of H0 being rejected falsely (type I error)
68for at least one interval at �, we set the rejection
69level for each interval at �=J.
70The goal of this adjustment procedure is to
71increase power under some multiple change
72point alternatives. Imagine a 150-year time series
73in which there is a change in a parameter � at
74years 50 and 100, and that � has value �1 in the
75intervals [1, 50] and [101, 150] and �2 in the
76interval [51, 100] as shown in Fig. 2. The global
77approach is to begin by testing the entire series
78for homogeneity using the test statistic

�n ¼ max
m<k<n�m

�k: ð25Þ

6 L. F. Robinson et al.



1 The maximum should occur at either year 50
2 or year 100. Supposing it is at year 50, the test
3 statistic depends on two maximum likelihood es-
4 timates, �̂�1 computed from the years [1, 50], and
5 �̂�2 based on the years [51, 150]. The size of the
6 test statistic (and thus the probability of rejecting
7 H0) increases with the difference between �̂�1 and
8 �̂�2. �̂�1 should be close to �1, but �̂�2 will be a
9 compromise between �2 and �1. If the test for

10 homogeneity were to be performed locally on the
11 interval [1, 100] or [51, 150], the MLEs would
12 not be distorted by the intervals [101, 150] or

13[1, 50], respectively. A greater difference be-
14tween �̂�1 and �̂�2 should be expected, increasing
15the probability of rejection.
16Disadvantages of the local procedure as com-
17pared to the global method include decreased
18power under single change point alternatives due
19to the adjusted significance levels, and the some-
20what arbitrary nature of the interval selection
21process, which may influence results. This modi-
22fied procedure is potentially important in long-
23term studies of climate variability, where several
24changes and reversals may be present.

253. Application

26Two relationships were examined for a signifi-
27cant change in covariance structure, the ENSO=
28IMR series and an ENSO=Brazil rainfall series.
29The latter was studied by Chiang et al. (2000),
30who found that the generally weak negative cor-
31relation peaked in the mid 20th century and, more
32significantly after 1980 or so. For the ENSO=
33IMR series, monthly rainfall totals and Pacific
34SST observations from 1871 to 2003 were both
35averaged over the months July to September. For
36the ENSO=Brazil series, monthly rainfall totals
37and SST were averaged over the months April
38to June, from 1856 to 2001. Each of the three
39individual series was tested for normality and ho-
40mogeneous mean, and each assumption appears
41reasonable.
42The ENSO series were slightly autocorre-
43lated. The best fitting ARMA model, as chosen

Fig. 2. Local change point detection maybe more powerful
than a global test when a shift in any parameter, here des-
ignated as theta, is followed by a reversal

Fig. 3. The likelihood ratio test statistics at each possible change point year. 95% significance is indicated by the dotted line
The test statistic for the Brazil series is at a maximum in 1982, with a p-value of less than 1%. The test statistic for the India
sereis is maximized in 1980, with a p-value of 0.12. Although the significance of the change point for the India series is less
clear than in the Brazilian series case, the similarity between the two series is suggestive

Detecting shifts with application to ENSO-Monsoon Rainfall Relationships 7



1 using the Akaike information criterion (AIC) was
2 AR(2). The raw data were tested for change-
3 points, as was a pre-whitened series from which
4 the AR component had been removed. The re-
5 sults were virtually identical for both the raw
6 and pre-whitened data.
7 The global analysis for the ENSO=IMR series
8 may suggest an event in 1980 with a correspond-
9 ing p-value of 0.12. Figure 3 shows the graph of

10 the log-likelihood functions versus change point
11 year k. Peaks indicate years where a change point
12 is relatively likely (although not necessarily
13 statistically significant). The dashed line is the
14 critical value at the 5% level of significance.
15 Approximate critical values obtained via simula-
16 tion rather than the asymptotic distribution of the
17 test statistic give a p-value of 0.14.
18 The sample covariance matrix in the time pe-
19 riod from 1871 to 1980 was

b��1 ¼
�

4:4 �0:659

�0:659 0:27

�
; ð26Þ

21 from 1980 to 2003 it was

b��2 ¼
�

3:76 �0:207

�0:207 0:404

�
: ð27Þ

23 The local and global analysis yielded the same
24 conclusions, although in the next section it will
25 be shown that in some situations the results can
26 differ.
27 The univariate version of the test designed to
28 detect changes in variance was performed on the
29 ENSO series, finding no significant changes in
30 variance. For the ENSO=Brazil series, a signifi-
31 cant change (p¼ 0.005) in the covariance matrix
32 was detected in 1982. A test for equality of vari-
33 ance on the Northeast Brazil Rainfall series re-
34 veals that there is a shift in the variance of the
35 univariate process which is significant at the 1%
36 level. Thus, there is a significant change in the
37 covariance structure in the ENSO=Brazil rela-
38 tionship, all or part of which can be explained
39 by an increase in the variance of the Brazilian
40 rainfall. The observed covariance matrices were

b��1 ¼
�

0:59 �0:075

�0:075 0:27

�
ð28Þ

42 pre-1982, and

b��2 ¼
�

2:43 �0:27

�0:27 0:46

�
ð29Þ

44from 1982 to 2001. It should be noted that an
45increase in the variance of the Brazilian rainfall
46process results in decreased predictability using
47ENSO, since �xy ¼ �xy=�x�y. This is consistent
48with the findings of Chiang et al. (2000), al-
49though not with the reasons proposed in that
50paper.
51As can be seen in Fig. 3, the first time the
52likelihood ratio crosses the 5% threshold is
53around 1960, and it continues to increase until
54the peak in 1982. Unlike under a sequential anal-
55ysis framework, the estimated change point is not
56at the point of first crossing the significance
57threshold, but rather the point at which the test
58statistic is maximized, i.e. the mle for the change
59point.

604. Power

61Simulations were run to assess the power (the
62probability of rejection when the null hypotheses
63is false) of the global and local methods under
64specific alternatives. The power of the global test
65under one-change point alternatives is assessed
66using series of 150 simulated bivariate normal
67observations, the first 75 of which are generated
68using one covariance matrix, and the last 75 using
69a different covariance matrix. Thousand series of
70length 150 are generated and tested for homoge-
71neity. The percentage of simulations in which the
72null hypothesis is rejected is an estimate of the
73power of the test. The results from these simula-
74tions are shown in Table 1 for � ¼ 0:05.
75Some findings based on simulations can be
76stated in a general manner. In a situation of con-
77stant variance and changing covariance, the mag-
78nitude of the change in covariance must be rather
79large to achieve reasonable power. If both vari-
80ance and covariance are changing, power in-
81creases with the magnitude of the absolute
82difference in the determinants of the covariance
83matrices. The power of the test decreases steadily
84as the change point approaches the beginning or
85end of the time series. The power of the global
86test appears to be greater for 1 change point than
87for 2 or more.
88Because the local test comprises multiple in-
89dividual hypothesis tests, the interpretation of the
90p-values is somewhat more difficult. To compare
91the power of the local test, using the intervals
92defined in Sect. 2, in comparison to the global

8 L. F. Robinson et al.



1 test in a multiple change point situation, 100 se-
2 ries were generated using�

1 0

0 1

�
ð30Þ

4 as the covariance matrix for observations 1 � � �
5 50, and 101 � � � 150, and�

1 0:6
0:6 1

�
ð31Þ

7 for observations 51 � � � 100. The observed power
8 in detecting at least one change at a significance
9 level of 5% for the local and global tests were

10 68% and 55%, respectively, suggesting that the
11 local test is more powerful, 26% more powerful
12 in this case, under some alternatives.

13 5. Summary and discussion

14 We have presented a parametric test for retro-
15 spective detection of change points in covariance
16 matrices which we have not previously seen in

17analysis of climate data. The test assumes the ob-
18servations are multivariate normal and inde-
19pendent in time. A hypothesis of homogeneous
20covariance is compared to one of at least one
21change point using a likelihood ratio. If a change
22point is detected, the data is split at the estimated
23change point and the two segments are tested for
24additional change points. The procedure is re-
25peated until no more change points are found.
26In situations where a shift is followed by a re-
27versal, a more powerful test maybe created by
28segmenting the data and testing segments of in-
29creasing size.
30Two series were tested for changes in co-
31variance: ENSO=Indian Monsoon Rainfall and
32ENSO=Northeast Brazil Rainfall. In the former,
33the resulting p-value was 0.12. This finding does
34not lend strong support to the claim that the
35ENSO=Monsoon relationship has recently chan-
36ged. If one exists,the most likely year for a
37change point is 1980. For the ENSO=Northeast
38Brazil series, a significant change (p-value <0.01)

Table 1. The results of simulations to study the power of the chang epoint detection method are above. For each combination of
pre and post-change covariance matrices, 1000 simulations of length 150 were created with a change point after 75 observations.
The percentage of the 1000 simulations in which the p-value fell below 5% is the observed power of the test

� before change � after change Power � before � after power

1 0

0 1

� �
1 0:2

0:2 1

� �
0.08

1 0:6
0:6 1

� �
1 0:2

0:2 1

� �
0.45

1 0

0 1

� �
1 0:4

0:4 1

� �
0.27

1 0:6
0:6 1

� �
1 0:4

0:4 1

� �
0.16

1 0

0 1

� �
1 0:6

0:6 1

� �
0.81

1 0:6
0:6 1

� �
1 0:6

0:6 1

� �
0.07

1 0

0 1

� �
1 0:8

0:8 1

� �
1

1 0:6
0:6 1

� �
1 0:8

0:8 1

� �
0.35

1 0

0 1

� �
1 1

1 1

� �
1

1 0:6
0:6 1

� �
1 1

1 1

� �
1

1 0

0 1

� �
1:5 0

0 1

� �
0.16

1 0:6
0:6 1

� �
1:5 0

0 1

� �
0.94

1 0

0 1

� �
1:5 0:245

0:245 1

� �
0.38

1 0:6
0:6 1

� �
1:5 0:245

0:245 1

� �
0.72

1 0

0 1

� �
1:5 0:5
0:5 1

� �
0.83

1 0:6
0:6 1

� �
1:5 0:5
0:5 1

� �
0.41

1 0

0 1

� �
1:5 0:74

0:74

� �
1 1

1 0:6
0:6 1

� �
1:5 0:74

0:74 1

� �
0.16

1 0

0 1

� �
1:5 1

1 1

� �
0.83

1 0:6
0:6 1

� �
1:5 1

1 1

� �
0.37

1 0

0 1

� �
1:5 1:5
1:5 1

� �
1

1 0:6
0:6 1

� �
1:5 1:5
1:5 1

� �
1
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1 was detected in 1982. All or part of the latter
2 change can be attributed to a change in the vari-
3 ance of the Brazil series. This finding differs
4 from the conclusion reached by Chiang et al.
5 (2000), who argued that a change in the frequen-
6 cy of strong El Niño is an explanation for a
7 change in the correlation between the two pro-
8 cesses. Additional research is necessary to sort
9 out this inconsistency.

10 The proposed method is designed to detect
11 abrupt shifts in the probability distributions of
12 the observed processes, but obviously in some
13 situations inhomogeneities would be better mod-
14 eled by continuous trends. Sveinsson and Salas
15 (2003) explore probability models for climate
16 processes in the presence of shifts, trends and
17 oscillatory behavior. Regression methods can be
18 used to detect and model trends in the mean of a
19 process, and the evolution of variance can be
20 modeled using ARCH (autoregressive condition-
21 al heteroskedastic) or GARCH (generalized autor-
22 egressive conditional heteroskedasticity, see
23 Bellerslev 1986) methodology. When trends are
24 not constant over the entire observed record, a
25 change point framework may still be needed to
26 detect the beginnings, ends or reversals of trends.
27 Likelihood ratios could be constructed in the
28 above manner, with regression or ARCH param-
29 eters as the quantities of interest.
30 The interconnection between changes in the
31 mean and variance of the distribution makes in-
32 ference more difficult when both types of inho-
33 mogeneity exist. Changes in mean can disguise
34 changes in variance and vice versa. The proce-
35 dure outlined above is constrained to detect only
36 simultaneous shifts in mean and variance, and
37 may not perform well in other situations. A
38 Bayesian approach in which uncertainty in both
39 location and variance are addressed separately
40 would be useful in creating a more flexible, real-
41 istic model.
42 The test used in this analysis is designed for a
43 fixed sample size and, does not assume a priori
44 that any period in the observed record is without
45 changes. Alternatively, when a stable reference
46 period is available and the aim is to detect
47 changes as new data is accumulated, methods
48 from statistical quality control, such as sequential
49 probability ratio test (SPRT) or cumulative sum

50(CUSUM), procedures, can be employed. A re-
51view of recent developments in using control
52charts for monitoring covariance matrices can
53be found in Yeh et al. (2006). If the assumption
54of known starting values for the parameters of
55interest is added to the analysis, a more powerful
56test maybe available.
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